
TRACES: TEE-based Runtime Auditing for Commodity Embedded Systems

Adam Caulfield∗, Antonio Joia Neto∗, Norrathep Rattanavipanon† and Ivan De Oliveira Nunes∗
∗Rochester Institute of Technology, USA; †Prince of Songkla University, Thailand

Abstract—Control Flow Attestation (CFA) offers a means to de-
tect control flow hijacking attacks on remote devices, enabling
verification of their runtime trustworthiness. CFA generates
a trace (CFLog) containing the destination of all branching
instructions executed. This allows a remote Verifier (Vrf) to
inspect the execution control flow on a potentially compro-
mised Prover (Prv) before trusting that a value/action was
correctly produced/performed by Prv. However, while CFA can
be used to detect runtime compromises, it cannot guarantee
the eventual delivery of the execution evidence (CFLog) to Vrf.
In turn, a compromised Prv may refuse to send CFLog to Vrf,
preventing its analysis to determine the exploit’s root cause
and appropriate remediation actions.

In this work, we propose TRACES: TEE-based Runtime
Auditing for Commodity Embedded Systems. TRACES guar-
antees reliable delivery of periodic runtime reports even when
Prv is compromised. This enables secure runtime auditing in
addition to best-effort delivery of evidence in CFA. TRACES
also supports a guaranteed remediation phase, triggered upon
compromise detection to ensure that identified runtime vulner-
abilities can be reliably patched. To the best of our knowledge,
TRACES is the first system to provide this functionality on
commodity devices (i.e., without requiring custom hardware
modifications). To that end, TRACES leverages support from
the ARM TrustZone-M Trusted Execution Environment (TEE).
To assess practicality, we implement and evaluate a fully func-
tional (open-source) prototype of TRACES atop the commodity
ARM Cortex-M33 micro-controller unit.

Index Terms—Control Flow Attestation, Software Security,
Embedded System Security.

1. Introduction

Embedded devices have become ubiquitous and play
critical roles within larger systems. These devices are
typically implemented using resource-constrained micro-
controller units (MCUs) that prioritize energy and space
efficiency, as well as low cost. Due to these budgetary
limitations, they lack security mechanisms commonly found
in higher-end application computers, including Memory
Management Units (MMUs), strong privilege separation,
and inter-process isolation. Consequently, embedded devices
tend to be more vulnerable to a wide range of attacks [1],
[2], [3], [4], [5].

Remote Attestation (RA) [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]

has been proposed as an inexpensive means to remotely
verify the software integrity of MCUs. RA is a challenge-
response protocol wherein a trusted Verifier (Vrf) issues a
cryptographic challenge and requests a timely response from
a potentially compromised remote Prover device (Prv). In
RA, a root of trust within Prv is responsible for producing
evidence of Prv’s software state by computing an authen-
ticated integrity check (e.g. a MAC or signature) over the
current snapshot of Prv’s program memory and the received
challenge. By examining the produced response message,
Vrf can determine if Prv’s software has been illegally mod-
ified.

Although classic RA can detect illegal program memory
modifications, it cannot detect runtime attacks that do not
modify code [23]. For instance, an adversary (Adv) could
exploit a vulnerability (e.g. a buffer overflow) to hijack a
program’s control flow without modifying its code [24].
Consequently, Adv could execute a malicious code sequence
(e.g., Jump-/Return-Oriented Programming – JOP/ROP –
attacks [25]) and remain oblivious to RA.

Control Flow Attestation (CFA) [26] was introduced to
augment classic RA evidence to include an authenticated
trace (denoted CFLog) of the attested software’s most recent
execution. CFLog contains all control flow transfers executed
(due to branching instructions such as jumps, returns,
calls, etc.), allowing Vrf to learn the exact path followed
(see Sec. 2.3 for more details on CFA). CFLog is usually
generated by instrumenting each branching instruction in
the attested binary [23], [27], [28], [29] or by using cus-
tom hardware to detect and store the source/destination
of branching instructions [30], [31], [32], [33]. As custom
hardware is not yet present on commodity devices, currently
deployable CFA leverages Trusted Execution Environments
(TEEs) along with binary instrumentation.

Unfortunately, existing TEE-based CFA techniques are
not able to guarantee that CFLog is received by Vrf. Al-
though an absence of responses containing CFLog leads
Vrf to distrust Prv (since an honest Prv would respond),
it does not support remotely auditing the compromising
behavior on Prv. ACFA [33] has recently acknowledged this
problem and proposed hardware modifications to existing
MCU architectures to ensure the reliable delivery of runtime
evidence to Vrf and to facilitate Vrf-triggered remediation.
However, because ACFA relies on custom hardware exten-
sions, its guarantees cannot be realized until new MCU
chips are fabricated. Consequently, no existing technique
is directly deployable in today’s commercial “off-the-shelf”
MCUs. Our work aims to resolve this conflict by making

the following contributions:
• We propose TRACES, the first design realizing secure

runtime auditing on off-the-shelf MCUs. TRACES’s TEE-
based approach combines a CFA Engine and a Supervi-
sor, both of which are implemented within TrustZone’s
Secure World. The former records control flow transfers
to CFLog, and the latter actively takes over Prv’s exe-
cution to enforce reliable delivery of CFLog to Vrf. Ad-
ditionally, TRACES supports Vrf-configured remediation
if/when compromises are detected. As a consequence,
our work demonstrates that runtime auditing and guar-
anteed remediation are achievable on commodity MCUs,
featuring the TrustZone-M TEE. As TRACES proposes a
software framework leveraging TrustZone-M, it requires
a clean-slate design without overlapping architectural fea-
tures with the prior work [33], while achieving equivalent
security guarantees.

• We implement and evaluate a fully functional and open-
source prototype of TRACES (available at [34]) using the
well-known ARM Cortex-M33 MCU. TRACES prototype
realizes runtime auditing/guaranteed remediation and is
accompanied by sample use cases targeting on-demand
sensing/actuation settings. We also conduct a systematic
security analysis, performance evaluation based on sev-
eral embedded programs, and an empirical evaluation of
TRACES under exemplary exploits.

2. Background

2.1. TrustZone for ARM Cortex-M MCUs

TrustZone for ARM Cortex-M (TrustZone-M) [35] is
an architectural security extension available on ARM V8
MCUs. It implements a TEE by isolating hardware and
software resources on the MCU between two worlds, namely
the “Secure” and “Non-Secure” Worlds [36]. TrustZone-M
hardware controllers isolate the two worlds so that both code
and data in the Secure World are immutable and inaccessible
to the Non-Secure World. The Secure World code can only
be called by the Non-Secure World from well-defined entry
points, called Non-Secure-Callables (NSC). This mechanism
enables controlled invocation and trustworthy execution of
security-critical code, as well as the safe storage of private
data within the Secure World, even when the Non-Secure
World code (in this case, untrusted MCU applications) is
fully compromised.

TrustZone-M defines the security state of memory seg-
ments by configuring hardware controllers called the Secure
Attribution Unit (SAU) and the Implementation-Defined At-
tribution Unit (IDAU) to enforce memory isolation between
worlds [37]. IDAU is a fixed memory map defined by the
manufacturer and it assigns a default minimal security level
to a given set of addresses. SAU, on the other hand, can
be configured by the Secure World code to further reserve
additional parts of the address space to the Secure World.

Memory accesses are first checked according to the
security attribution defined by SAU, then are checked by the

Figure 1: Typical RA interaction

Memory Protection Unit (MPU). With TrustZone security
extension, the MPU is segmented into Non-Secure and
Secure states, effectively establishing one MPU for each
world. The Secure MPU registers are only accessible to the
Secure World, whereas the Non-Secure MPU (NS-MPU)
registers are accessible to both worlds. MPU configuration
registers are by default only accessible to software executing
in privileged mode [38] and write access to MPU configura-
tion registers can be revoked via the System Configuration
Registers [39].

TrustZone-M also supports the assignment of interrupts
using separate Interrupt Vector Tables (IVTs) for the Secure
and Non-Secure Worlds. IVTs are managed by the Nested
Vector Interrupt Controller (NVIC). Each interrupt can be
assigned as Secure or Non-Secure by setting the Interrupt
Target Non-Secure (NVIC ITNS) register [40], which is
only configurable by the Secure World code. All secure
interrupts have higher or equal priority than non-secure
interrupts. When a secure interrupt is triggered while the
CPU is executing in the Non-Secure World, the CPU pauses
its execution, fetches the address stored in the Secure IVT,
and transfers execution to the Secure World Interrupt Service
Routine (ISR) pointed by this address. The context of the
interrupted task is pushed onto the Non-Secure stack and
popped upon return from the interrupt to the Non-Secure
World.

2.2. Remote Attestation (RA)

RA is a challenge-response protocol in which Vrf aims
to determine whether a remote Prv is installed with the
expected software image. As depicted in Fig. 1, RA usually
is composed of the following steps:
1) Vrf sends an attestation request to Prv containing a

cryptographic challenge Chal.
2) A root of trust on Prv produces a report H by computing

an authenticated integrity-ensuring function over Prv’s
own program memory and Chal.

3) Prv transmits H to Vrf.
4) Vrf compares H against the expected value to determine

if Prv is in a trustworthy state.
The authenticated integrity-ensuring function in step 2

above can be implemented as a Message Authentication
Code (MAC) or a digital signature. The secret key used
in this computation must be securely stored by Prv’s root
of trust to ensure that it is immutable and inaccessible to
any untrusted (potentially compromised) software on Prv.

2

Figure 2: Illustration of a control flow attack

Therefore, secure storage for the RA secret key implies some
level of hardware support (e.g., from TEEs, as in this work).

2.3. Control Flow Attestation (CFA)

Control flow attacks [41], [42], [43] aim to alter a
program’s intended control flow by executing unintended
sequences of instructions. To illustrate these attacks, we
refer to Fig. 2 which shows a simple exemplary program
and its control flow graph (CFG). In benign executions, there
are two valid paths in the program’s CFG: {A,B,E,D}
or {A,C, F,D} depending on the variable auth. How-
ever, suppose a memory safety vulnerability (e.g., a buffer
overflow[24]) exists in function_1() implementation
(i.e., node E). In that case, it can be exploited to illegally
overwrite function_1()’s return address in the stack
modifying the expected return site (node D) to an arbitrary
address chosen by Adv – the call to function_2()
(node C) in this example. As a consequence, the illegal
sequence of nodes {A,B,E,C, F,D} would be executed
instead, even though the direct transition from the E to C
does not exist in the program’s CFG. More sophisticated
control flow attacks – such as return-oriented programming
(ROP) [25] and jump oriented programming (JOP) [44])
– can chain multiple such illegal control flow transfers to
trigger arbitrary (often Turing-complete) behavior without
modifying the program’s code. In turn, these attacks cannot
be detected by classic RA protocols.

CFA [6], [28], [27], [31], [32], [45], [46], [23], [47]
augments RA reports to enable detection of control flow
attacks. In addition to proving whether the correct software
image is installed on Prv, CFA also produces a trace in-
forming Vrf of the order in which the program’s instructions
have executed. This trace consists of an authenticated log
(CFLog) of all control flow transfers that occurred during
a program’s execution. CFLog is produced at runtime and
stored in protected memory. Existing CFA techniques use
either (1) binary instrumentation along with TEE support;
or (2) custom hardware modifications to generate CFLog by
detecting and saving each branch destination to hardware-
protected memory. Upon receiving CFLog, Vrf can inspect it
alongside the attested software image to detect control flow
attacks. For instance, in the attack example of Fig. 2, the
illegal sequence {A,B,E,C, F,D} would appear on CFLog

and therefore Vrf would distrust this malicious execution.

In the case of TEE-based CFA (i.e., the class of CFA
approaches applicable to existing devices without requiring
custom hardware modifications) TrustZone’s Secure World
is used as a root of trust to build and store CFLog. The binary
to be attested is instrumented so that all branch instructions
(e.g., jumps, returns, calls, etc.) are prepended with
additional TrustZone calls that trap execution onto the Se-
cure World. Once in the Secure World, CFLog is updated to
reflect the correspondent control flow transfer.

Once execution completes, Prv authenticates CFLog and
the installed software image (as in typical RA) to produce
the attestation response (e.g., by computing a MAC or signa-
ture using the attestation secret key). Finally, Prv transmits
CFLog to Vrf along with the produced authentication token
(i.e., the MAC/signature result). In possession of the attested
binary, CFLog, and their authenticator, Vrf can determine if
Prv execution occurred as intended and detect control flow
attacks (in addition to binary modifications).

3. TRACES Overview

As noted earlier, CFA cannot guarantee that CFLog is
received by Vrf when Prv is compromised. While this
suffices to detect compromises (in general, the absence
of a response indicates that something is wrong), it does
not enable auditing of CFLog to pinpoint the source of
compromises (i.e., to determine what is wrong). The latter
property is non-trivial to obtain since a compromised Prv
might ignore the protocol and refuse to send back attestation
responses indicating a compromise (and its root cause).

TRACES is designed to guarantee that Vrf eventually
receives runtime reports containing the information about
Prv execution. TRACES also supports guaranteed healing
of Prv when a compromise is detected. In contrast with
prior related work [33], TRACES does not require custom
hardware modifications to the MCU, enabling control flow
auditing in existing (“off-the-shelf”) devices.

TRACES targets auditing on-demand sensing/actuation
operations denoted App-s, where Vrf requests the execution
of one particular App on Prv, at a given time. It
extends the traditional “Vrf sends request →
Prv executes requested operation → Vrf
receives result” paradigm to enable control flow
auditing (and potential remediation) of each requested
operation. TRACES implements a Secure World-resident
software monitor. Any attested App is untrusted and thus
executes in the Non-Secure World.

3.1. Goals

Runtime Auditing: TRACES guarantees that a com-
promised App on Prv cannot interfere with the generation
or transmission of a runtime report. It also ensures that
each report is reliably received by Vrf, periodically re-
transmitting a report until a subsequent confirmation mes-
sage is received from Vrf. In line with prior TEE-based
CFA, TRACES instruments App binary to construct CFLog by
logging all non-deterministic control flow transfers during

3

Figure 3: High level illustration of TRACES design.

App execution. Each runtime report sent to Vrf contains an
authenticated CFLog of App’s execution (or a partial slice
of CFLog, if the memory region reserved to store CFLog

fills up during App’s execution). By inspecting the received
CFLog, Vrf can audit Prv’s runtime execution and pinpoint
the exploit source when an attack is detected.

Guaranteed Remediation: TRACES Secure World im-
plementation retains control over Prv execution after send-
ing a report and until a response is received by Vrf. If
the response indicates that no exploit was found, the Non-
Secure World execution simply resumes. If Vrf responds
with a remediation request, TRACES executes a Secure
World-resident remediation function immediately. Examples
include: wiping all data memory, shutting down Prv, or
updating its software (i.e., its Non-Secure World program
memory section containing the vulnerable App). Remedia-
tion actions are configurable by Vrf according to a desired
security policy.

3.2. Architecture at a High-Level

As illustrated in Fig. 3, TRACES consists of three Secure
World-resident software modules: (i) the CFA engine, (ii) the
Control Flow Violation (CFV) Resolver, and (iii) the Su-
pervisor. CFA engine is responsible for maintaining CFLog.
CFV Resolver implements Vrf desired remediation action.
Lastly, the Supervisor acts as a controller within TRACES.
It handles the transitions between different TRACES actions
and enforces the required security properties while executing
each of these actions.

Before deployment, App’s binary is instrumented with
a call to CFA Engine at each non-deterministic branching
instruction (note that the presence of expected instrumen-
tation is conveyed to Vrf as part of TRACES responses –
see below). At boot, TRACES workflow enforces that the
Supervisor is always the first software to run on Prv. It
performs boot-time configurations to restrict the Non-Secure
World’s access to security-critical resources and waits for an
initial Vrf authorization to initialize the Non-Secure World
execution.

At runtime, upon receiving a Vrf-issued request for the
attested execution of some App, the Supervisor measures
App’s binary (by hashing the Non-Secure World’s program
memory), configures the measured region as read-only (to
prevent code modifications after the initial measurement),

disables Non-Secure World interrupts, and initiates App’s
execution in the Non-Secure World. During App execution,
CFLog is continually appended with control flow transfers
due to the instrumented CFA Engine calls. Aside from CFA
Engine calls, after App execution is initiated, TRACES Se-
cure World implementation acts upon three events, referred
to as triggers [T1], [T2], and [T3] defined as:
[T1]: A predefined time limit for periodic communication

with Vrf has been reached. This guarantee is obtained
by leveraging the NVIC controller (recall Sec. 2) to
assign a timer-based interrupt to the Secure World.

[T2]: The execution of App has concluded. [T2] is obtained
with a TrustZone-protected return instruction to the
Secure World.

[T3]: The memory region reserved to store CFLog is full and
the current CFLog values need to be sent to Vrf before
new control flow transfers can be added. To obtain
[T3], TRACES checks if CFLog designated memory is
full after appending each new control flow transfer.

[T1] is implemented as a Secure World-protected in-
terrupt. [T2] is a secure (i.e., TrustZone-protected) return
to Secure World that is measured by App’s hash and im-
mutable after that stage. [T3] is implemented within the
Secure World code. Therefore, given TrustZone guarantees,
these triggers cannot be disabled by the Non-Secure World.
Furthermore, the Secure World execution, once triggered,
cannot be interrupted by the Non-Secure World. Any of
the three triggers results in a call to TRACES to generate
a signed runtime report containing the current snapshot of
CFLog as well as the hash of App’s binary. The Supervisor
sends the report to Vrf for analysis and retains control over
Prv in the Secure World until an authenticated acknowledg-
ment response is received from Vrf.

Remark: note that the hash of App’s binary is sent along
with every report, allowing Vrf to also ascertain App’s
binary integrity. This implies the presence of the expected
code instrumentation responsible for generating CFLog. See
protocol details in Sec. 4.

While waiting for Vrf’s response, the produced report is
re-transmitted periodically to cope with eventual network
losses. If Vrf response indicates that a compromise was
detected, Supervisor invokes CFV Resolver for remediation.
If no compromise is indicated, Supervisor simply resumes
App execution from where it left off when the trigger
occurred. This process continues while App executes (i.e.,
until Vrf receives a report issued due to [T2]).

3.3. TRACES Security Intuition.

The intuition for TRACES’s security (in achieving audit-
ing and guaranteed remediation capabilities) follows from
the facts that: (1) triggers [T1], [T2], and [T3] cannot be
disabled by the Non-Secure World and (2) the Supervisor-
enforced workflow cannot be disrupted by the Non-Secure
World. The workflow assures that Vrf always receives re-
ports and can act upon them before execution of untrusted
software in Prv is resumed. In Sec. 4, we delve into the
details of how these high-level ideas are obtained concretely.

4

Figure 4: TRACES workflow.

In Sec. 5, we perform a systematic security analysis of
TRACES.

4. TRACES in Detail

4.1. Scope and System Model

TRACES is focused on single-core, bare-metal MCUs
equipped with TEEs, (TrustZone-M, in our case). Attested
App-s execute in the Non-Secure World, while the Secure
World contains TRACES trusted computing base (TCB). We
rely on the following standard requirements from Prv’s TEE
(which are attainable through standard ARM TrustZone-M
v8 architectural support [35]):
• Cryptographic keys are securely provisioned to Prv and
Vrf prior to deployment. Vrf is trusted and Prv keys are
stored within the Secure World (thus inaccessible to the
Non-Secure World).

• The Secure World (code and data) is trusted and isolated
from Non-Secure World (including App);

• Prv has separate IVTs for the Non-Secure and Secure
Worlds. Interrupt sources can be assigned to either world
and the Secure-IVT has priority over the Non-Secure-IVT.

• Prv has a Non-Secure Memory Protection Unit (NS-MPU)
that controls access to Non-Secure World memory. (see
Sec. 2.1).

Following the on-demand sensing/actuation regime dis-
cussed in Sec. 3, Vrf aims to audit the runtime behavior
of one Non-Secure World App at a time. Nonetheless, Prv
may have any number of App-s installed in its Non-Secure
World program memory. Similar to any TEE-based CFA,
the branching instructions of App must be correctly instru-
mented with additional instructions to log the control flow
transfers. This instrumentation is performed at compile-time
before App’s deployment on Prv (which can also happen
remotely). In addition, Vrf keeps a copy of the instrumented
App binary (or hash thereof) to verify the received hash of
App’s binary included in Prv’s response, as described in
Sec. 2.2.

4.2. Adversary Model

Our Adv model is consistent with that of secure systems
built atop TEEs. We consider Adv capable of fully com-
promising the Non-Secure World on Prv. Adv can exploit
vulnerabilities to launch code-injection attacks, hijack App’s
control flow, or perform code-reuse attacks. In addition, Adv
can manipulate Non-Secure World interrupts and their ISRs.
Adv cannot tamper with code or data in the Secure World or
circumvent access controls enforced by the TEE hardware.

Adv’s ability to modify Non-Secure World code must be
accounted for in TRACES’s design because Adv could use it
to remove CFA-related instrumentation. TRACES leverages
TEE controls along with temporally consistent code integrity
measurements to ensure that any such attempt is detected by
Vrf (see Section 4.3). This is in contrast to prior work [23],
[27], [48] that rules out code modifications from their threat
model by assumption (the latter also implies an inability to
perform benign software updates at runtime [13]). Our de-
sign shows the latter requirement/limitation as unnecessary.

Invasive physical attacks that modify hardware are out-
of-scope of this work, as they require an orthogonal set of
physical security measures. For details see [49], [50].

4.3. TRACES Workflow

TRACES workflow is presented in Fig. 4 and this section
details each step, including processes (1 - 9) and decisions
(A - C), along with details of how the workflow rules are
enforced by TRACES design at each stage.

Initialization Routine: The first step in the Initializa-
tion Routine is a standard 1 Secure Boot verification that
ensures the integrity of the trusted software loaded onto the
Secure World, i.e., TRACES’s implementation.

TRACES Supervisor module is the first to execute after
secure boot. It performs the 2 Initial Setup by reserving
a memory region SWMEM ′ , located within the Secure
World, to store the runtime report. To complete initializa-
tion, Supervisor retrieves the runtime auditing context. This
includes Secure World-resident memory regions that store

5

CFLog, CFLog size, and other metadata related to the runtime
auditing context. We note that in most cases, the context is
empty at this stage. However, in some instances, it may
contain values from a previous malicious execution that led
the MCU to a reset (see below).

Waiting for App’s Attested Execution Request: After
completing all initialization tasks, the Supervisor determines
if an active attestation process of some App was ongoing
before boot A . For instance, if a software fault occurred
and led to a system reset during App execution, a report
transmission 3 must occur next to notify Vrf of the runtime
state that has led to the fault. If there is no previous
operational context (Prv was inactive), Supervisor continues
to 4 Waiting for Vrf Message. Upon receiving a message
from Vrf, the Supervisor checks whether this message is
timely and generated by Vrf B (via standard cryptographic
authentication – see Sec. 4.4 for protocol details). Upon suc-
cessful authentication, the Supervisor processes Vrf request
C . A request to start the attested execution of some App

on Prv contains a unique challenge Chal used to ensure
the freshness of the report to be generated by the App’s
attested execution. The Supervisor saves Chal and associated
metadata within the Secure World before executing App.

Attested Execution: A new attested execution requires
the Supervisor to 5 Setup App and perform the following
actions before beginning execution.
• Setting the Non-Secure World program memory as

Read/Execute-Only and its data memory as Non-
Executable using the NS-MPU. This prevents unautho-
rized code modification and data execution at runtime.

• Revoking the Non-Secure World’s ability to reconfigure
NS-MPU. This is achieved in two steps: (1) by setting the
System Configuration Registers to prevent accesses to the
NS-MPU configuration registers; and (2) by using SAU
to assign the System Configuration registers themselves
to be accessible only by the Secure World. After this
stage, both the NS-MPU and System Control registers are
inaccessible to any Non-Secure World code.

• Configure [T1] as a secure timer interrupt to activate
after δ clock cycles, with a higher priority than all other
interrupts. As a Secure World interrupt, [T1] cannot be
disabled or misconfigured by untrusted code in the Non-
Secure World. This timer resets every time a report is
generated and is deactivated at the end of App’s attested
execution. The value of δ can be either fixed to a default
or chosen by Vrf within the attested execution request.

• Measure App’s code by hashing the entire Non-Secure
World’s program memory to capture its state immediately
before execution. The hash result (HPMEM) is stored in
Secure World memory.

• Initialize CFA engine metadata. This includes setting the
CFA status flag as “active”.

Once all configurations are set, the Supervisor 6 Exe-
cutes App in the Non-Secure World. During App’s execu-
tion, CFA Engine is invoked by App instrumented instruc-
tions whenever a new control flow transfer occurs to 7
Append CFLog. Each instrumented instruction appends the
current control flow transfer to CFLog and then resumes App

execution 6 as long as CFLog is not full. If CFLog is full,
CFA Engine triggers [T3] to transmit a new report to Vrf
8 before additional transfers can be added.

Reliable Runtime Report & Vrf Response: When ei-
ther trigger [T1], [T2], or [T3] is activated, CFA Engine must
8 Generate a Report to be sent to Vrf. To ensure atomic

execution, all interrupts are disabled as the first step of 8 .
Moreover, the timer for [T1] is cleared and paused until
App execution is resumed. The report is cryptographically
authenticated (see protocol details in Sec. 4.4) and includes
Chal, HPMEM , CFLog, its size, and outputs (e.g., sensed
values) produced by App execution (if any).

After computing the report, Supervisor 3 Transmits the
Report and waits for a response 4 . While Prv waits, Vrf is
expected to: receive the report and verify its authenticity,
validate CFLog and HPMEM , and respond to Prv based
on this analysis. During this waiting period in 4 , the
Supervisor enters sleep mode and periodically wakes up to
re-transmit the report in 3 . This periodic re-transmission
is necessary to ensure that the report eventually reaches
Vrf, despite occasional network failures or network denial
of service attempts. Upon receiving a response from Vrf,
Prv proceeds to perform checks B and C .

If a violation is detected in the report, Vrf message in-
cludes a Heal request (in C), causing Supervisor to invoke
the remediation routine managed by CFV Resolver in 9 . In
the absence of control flow violations, there are two cases.
If the previous report was generated by [T2], indicating
that App has completed its execution, Vrf response instructs
the Supervisor to stop the current attestation process and
return to the idle waiting stage 4 . To do so, Supervisor
changes the CFA status flag to “inactive” and waits for a
new attested execution request from Vrf. Otherwise, App’s
attested execution is resumed 6 .

CFV Resolver: When Vrf message contains a request
to Heal Prv, the CFV Resolver is invoked following C
to execute the 9 Remediation Procedure. This module
contains the Vrf-defined remediation action that can accom-
modate a variety of policies. For instance, erasing all data
memory, updating App’s binary to patch the vulnerability,
or shutting Prv down. By default, this action is followed
by a system reset to ensure that the system reboots in the
newly configured state properly. All non-maskable interrupts
and hardware fault exceptions that could otherwise preempt
remediation actions are configured to reset Prv, thereby
triggering the Supervisor execution at reboot and resuming
the remediation action in 9 .

As mentioned earlier, if Prv resets 1 during App’s
attested execution (e.g., due to faults or software bugs) the
remnants of CFLog must be sent to Vrf for auditing (e.g.,
to pinpoint the exploit causing the reboot). In this case, the
CFA process remains active when Supervisor reaches A .
At this point, Supervisor continues to 3 instead of 4 and
re-transmits the report containing the remnants of CFLog.

6

4.4. TRACES Protocol

Based on the workflow defined in Sec. 4.3, we specify
the interaction between Vrf and Prv in Protocol 1. This
protocol starts when Prv receives a request from Vrf.

In Step 1, the Supervisor hashes and locks (pre-
vents writes to) the Non-Secure World program memory
(PMEM) to produce HPMEM . In Step 2, TRACES starts
executing App. CFLog is appended whenever a control flow
transfer happens within App. Upon any of the triggers [T1],
[T2], or [T3], Prv proceeds to Step 3.

In Step 3, TRACES attests Prv state by computing a
MAC (σPrv) on HPMEM and CFLog using a pre-shared
symmetric key (an asymmetric version of the protocol can
be obtained in the standard way, by replacing the MAC
operations by signatures). The runtime report (RP), which
includes σPrv, CFLog and LogSize, is then created and sent
to Vrf in Step 4. Upon receiving RP in Step 5, Vrf proceeds
to:
1) validate σPrv by checking whether it was computed over

the latest challenge Chal, the hash of the expected binary
PMEM ′, and the received CFLog.

2) analyze App execution using the received CFLog. Vrf
can complete this step using several techniques, e.g.,
determining whether CFLog matches a valid path in App’s
CFG, emulating a shadow stack of App’s execution, and
more. Sec. 7.3 elaborates on verification possibilities.
Based on this analysis, in Step 6, Vrf produces an output

(vrfresult) to indicate the verification result and next action.
In Step 7, Vrf issues a fresh challenge Chal′ and creates an
authentication token (σVrf) by MAC-ing Chal′ and vrfresult
and transmits their response RV to Prv in Step 8.

In Step 9, Prv receives and parses RV . Next, in Step 10,
Prv verifies RV by checking whether the MAC σVrf is valid
and if σVrf was computed on a fresh challenge. This step
produces a verification output out; when out = False, Prv
disregards the response, continues to wait, and repeats Step
4 until it receives an authenticated message from a valid
Vrf.

Otherwise, Prv updates its own persistent copy of the
latest challenge to the newly received Chal′ and examines
vrfresult to decide on the next course of action. If Vrf
disapproves the report (vrfresult = Heal), Prv invokes
the CFV Resolver to execute the remediation (Step 11) and
subsequently restarts the system. Conversely, when Vrf ap-
proves the report (vrfresult = Exec or End), Prv transfers
control back to the Non-Secure World to resume or end
App’s execution.

5. Security Analysis

Our Adv model (see Sec. 4.2) considers that Adv has
full control over Prv’s Non-Secure World. To circumvent
TRACES guarantees Adv must (1) forge a report that is
accepted by Vrf and does not correspond to the actual
execution of App; (2) prevent Vrf from receiving a legitimate
response (and CFLog therein); or (3) prevent a Vrf-initiated
remediation.

Protocol 1 - TRACES Protocol

NOTATION:
• PMEM : Prv’s Non-Secure World program memory.
• PMEM ′: Expected Prv’s Non-Secure World program memory.
• Logsize: Size of CFLog.
• h: A secure cryptographic hash function.
• MACK : Compute MAC using key K.
• VerifyK : MAC verification using public key K.
• k: key pre-shared between Prv and Vrf
• Chal: Challenge based on a (persistent) increasing counter.

PROTOCOL:
Prover (Prv) Secure World
1. Generate hash of and lock PMEM (executed before App’s execution.)

HPMEM := h(PMEM)

2. Execute App in the Non-Secure World. During App’s execution, the
Secure World is invoked to append CFLog whenever a control flow
transfer happens.

3. Upon a trigger, compute MAC:
σPrv := MACk(HPMEM , Logsize,CFLog,Chal)

4. Send report RP to Vrf with the following format:
RP := (σPrv||Logsize||CFLog)

Wait for Vrf’s response and re-transmit RP periodically until the
response is received.

Verifier (Vrf)
5. Receive RP and extract σPrv, Logsize,CFLog

6. Verify report :
vrfresult := Verifyk(σPrv, PMEM ′, Logsize,CFLog,Chal)

7. Increment Chal′ := Chal+1 and creates an authorization token based
on this new challenge:

σVrf := MACk(Chal
′, vrfresult)

8. Construct and send response RV to Prv

RV := (vrfresult||Chal′||σVrf)→ Prv

Prover (Prv) Secure World
9. Receive RV and extract vrfresult,Chal′, σVrf ← RV

10. Authenticate the response, producing a one-bit output:
out := Verifyk(vrfresult,Chal

′, σVrf) and (Chal′ > Chal)

Based on out and vrfresult, it decides the next transition:
• If out = False: Re-enter Wait (Jump to Step 4)
• Else If vrfresult = Heal: Update local value of Chal to Chal′ and

enter Remediate state (Jump to Step 11)
• Else If vrfresult = Exec, update local value of Chal to Chal′ and

resume App (jump to Step 2)
• Else If vrfresult = End, end CFA process unlocking PMEM and

concluding the protocol instance.
11. Execute remediation software and restart the system.

5.1. Report Forgery

A runtime report is considered trustworthy if it faithfully
reflects the control flow of App’s timely execution as well
as its binary. Adv may attempt to manipulate the response
message to deceive Vrf in the following ways:

App Binary Modifications. Adv may modify the Non-
Secure World binary to remove or add instructions that gen-
erate CFLog entries in an attempt to produce a valid CFLog

that differs from the true control flow of App’s execution.
However, Vrf can detect any modifications to App binary by
checking HPMEM , which is computed immediately before
App execution. In between HPMEM generation and the end

7

of App’s execution, App’s binary cannot be modified, as
enforced using NS-MPU and SAU protections.

Control Flow Attacks. Adv may attempt to corrupt
App’s execution by exploiting memory safety vulnerabilities
to cause a malicious sequence of control flow transfers
without modifying App’s binary. However, any such attempt
must be reflected on CFLog (due to the instrumentation of
all branching instructions) and thus visible to Vrf.

Interrupt Manipulation. An attacker could also lever-
age non-secure interrupts to stealthily modify App’s con-
trol flow. By default, TRACES disables interrupts during
App’s execution. For real-time App-s that must process
interrupts, this requirement can also be alleviated by lever-
aging interrupt-safety mechanisms for CFA, such as ISC-
FLAT [29].

CFLog Forgery. Adv may attempt to directly forge CFLog

by modifying the response message or the memory region
storing CFLog on Prv. Since CFLog is append-only and stored
in the Secure World, Adv cannot modify CFLog (or other
TRACES data) in Prv’s memory. In addition, attempts to
modify or replay a response message are ineffective due
to the use of an unforgeable cryptographic function (see
below) computed on a fresh challenge (Chal) unique for
every response message in the protocol.

Forgery of Attestation Result. Adv may attempt to
forge the attestation result σPrv. However, this forgery is
computationally infeasible without knowledge of the key
given the security of the underlying cryptographic function.
Finally, the key is stored in the Secure World, thus inacces-
sible to Adv.

5.2. Preventing Evidence Delivery

Since triggers [T1], [T2], and [T3] cause TRACES to
generate and send a report, Adv must prevent them from
occurring to block the delivery of evidence to Vrf. Adv can
only avoid filling CFLog to its maximum size (hence trigger-
ing [T3]) by modifying the binary of App or by launching a
control flow attack that jumps to an uninstrumented section
of the Non-Secure program memory outside of App’s binary.
Although these measures prevent [T3], these attacks will
always be reflected in the next report caused by triggers
[T1] or [T2]. If CFLog does not fill up to its maximum size
during App execution, App will eventually end and cause a
trigger [T2] or a timeout [T1] (whichever comes first). Since
the timer is configured as a secure interrupt, it is impossible
for Adv to prevent [T1] because it is handled by the Secure
World. The NVIC interrupt configuration is controlled by
the Secure World and cannot be modified by the Non-Secure
World.

TRACES implementation re-transmits evidence until an
authenticated confirmation (and remediation request, if ap-
plicable) is received from Vrf. This guarantees that Vrf does
not lose evidence due to network faults/attacks. However,
it also prevents execution on Prv from resuming before
verification is completed successfully, adversely affecting
systems that rely on real-time response and time-critical
actions. To cope with this, TRACES can be modified to

impose a less-strict policy. This could work by allowing App
to continue execution until the next [T1] trigger, when a new
report must be transmitted to Vrf. If no receipt confirmation
for the older report is received from Vrf, the new report
would now contain both the old CFLog and new control
flow transfers added since App’s resumption. The less-strict
verification policy, however, introduces a security trade-off.
A compromised Prv could, in this case, execute malicious
actions for a longer period, i.e., until the second [T1] trigger.

5.3. Preventing Remediation Actions

It follows from the atomic execution of the remedia-
tion action after communication with Vrf, that Adv cannot
prevent it. TRACES ensures that Prv execution remains in
the Secure World until it has received approval from Vrf to
resume the Non-Secure World execution. In addition, Prv
stays in the Secure World and attests to the result of any
remediation action after its completion. The latter serves as
confirmation to Vrf that the remediation action was executed
properly. Although Prv may reset, perhaps in an attempt
from Adv to prevent the remediation from taking place,
the report transmission phase is always re-initiated after
any reset, and it is eventually followed by remediation
(recall Fig. 4). As a result, if a reset indeed occurs, malware
in the Non-Secure World is prevented from executing until
the remediation phase is completed successfully.

6. Implementation Details

6.1. Instrumentation.

Prior to deployment, App’s assembly is instrumented to
redirect branches to a trampoline function in the NSC that
calls the CFA Engine. We implement trampoline functions
for, indirect calls, conditional branches, and returns.

Conditional Branch Instructions. Since there are two
possible destinations of a conditional branch (“taken” and
“not-taken”), a call to the trampoline function (via bl) is
inserted in both places. Then after calling the trampoline,
the link register lr holds the branch’s destination address.
The trampoline passes lr to the CFA Engine for logging.
Afterwards, the CFA Engine executes bxns lr instruction
to return to the branch destination. When a conditional
branch occurs due to a static loop (i.e., a loop with no
internal branching), it can be instrumented differently to op-
timize the logging. A loop is detected in App’s assembly by
locating a “backward” non-linking branch instruction (i.e., a
conditional branch instruction whose “branch-taken” desti-
nation precedes the instruction itself) [32]. Once located, the
register that is incremented (ri) and the register (or value)
used as the limit for comparison (rL) are identified. Then,
the instruction that initializes ri is located to determine the
loop entry. At the entry, three instructions are then added.
First, the loop’s “branch-taken” destination is loaded into a
reserved register rr0. Next, the value from rL is loaded
into a second reserved register rr1. Lastly, a bl to a loop

8

TABLE 1: App before and after instrumentation
Application Information Sensor Applications BEEBS Programs [51]

Ultrasonic [52] Geiger [53] Syringe [54] Temperature [55] GPS [56] prime crc32 sglib-arraybinsearch
Total Instructions 82 223 152 157 1200 133 57 97

Instructions post-instrumentation 91 238 172 174 1389 146 61 116
Task runtime (ms) 0.2 0.2 0.8 0.3 0.4 0.9 1.2 0.6

Instrumented task runtime (ms) 0.4 1.0 1.8 1.6 3.0 5.8 9.4 13.4
Control Flow Transfers (at runtime) 1015 744 654 607 649 1304 2051 3225

Generated CFLog size (Bytes) 56 186 1400 1212 2596 5216 8204 12900

trampoline function is inserted. The loop trampoline reads
from rr0 and rr1 to append CFLog with the destination
address and the limit of the loop, respectively. This opti-
mization significantly reduces the number of calls to CFA
Engine (to just 1) to log all static loop iterations. The loop
exit is instrumented like any conditional branch ”not-taken”
destination. If the loop is not static or rL is modified in the
loop, the conditional branch is instrumented as described
earlier, and CFLog optimization occurs in the CFA Engine.
In this case, CFA Engine treats repeated backward edges
as loops and increments an internal loop counter instead
of logging the repeated address. When the loop exits, the
counter is logged.

Indirect Call Instructions. Indirect calls are of the form
blx rx, which calls the address stored in a register rx. To
save the value of rx, the trampoline function for indirect
calls uses the reserved register rr0. Assume an instruction
blx rx indirectly calls the function func. This instruction
in App is replaced with two instructions: first, an instruction
to load rx into rr0; then, a bl to the trampoline is inserted.
When reaching the trampoline, rr0 holds func’s address,
and lr holds func’s return address. The trampoline then
passes the value of rr0 to the CFA engine to update CFLog.
After appending CFLog, the trampoline returns to App via
bxns rr0 and resumes App at the first instruction of func
while preserving func’s return address in lr. Our imple-
mentation reserves r10 as rr0 and r11 as rr1. All other
instances of r10 and r11 in App assembly are replaced
with different general-purpose register before recompilation.

Return Instructions. There are two scenarios for returns
from a function in App’s assembly. If the function performs
no other calls, the return is implemented as bx lr. If it
contains a call, lr must be pushed onto the stack, and
thus the return is implemented as pop pc. In the first
case, we replace bx lr with a direct branch (via b) to the
trampoline. A direct branch ensures the return address in lr
is not modified. After logging lr, the trampoline returns via
bxns lr to the proper destination. In the second case, pop
pc is replaced with two instructions: a pop lr followed
by a direct branch (via b) to the trampoline. The logging
and return are then performed in the same manner as the
first scenario.

6.2. Module Configurations:

In our prototype, the Supervisor communicates with Vrf
using a UART-to-USB connection. The available LP-UART
interface is configured at baud rate of 921600 bps. The
Supervisor also reserves the MCU’s Timer #3 to the Secure

World to implement [T1] with a deadline of 5 seconds
and sets the maximum CFLog size to 50 KBytes. CFA
Engine implementation uses SHA256 and HMAC-SHA256
from HACL* [57] formally verified library for hash and
MAC computations. We use default parameters with 256-
bit keys, and 512-bit Chal. In our prototype, CFV Resolver
implements three simple remediation actions: freeze Prv ex-
ecution (i.e., run an infinite loop); disable the compromised
App; and wipe the compromised App from the Non-Secure
World.

The memory region SWMEM ′ that stores the runtime
report must be recoverable through software resets, e.g., by
assigning SWMEM ′ to a persistent memory location. Al-
ternatively, some ARM Cortex-M devices with two SRAM
segments allow one segment to be retained when the internal
voltage regulator powers off as a feature of the lowest-power
mode [39]. In this work, we configure SRAM2 to retain the
runtime report through software resets.

7. Prototype Evaluation

We implement and test TRACES using a NUCLEO-
L552ZE-Q development board shown equipped with an
STM32L552ZE MCU based on the ARM Cortex-M33 (v8)
operating at 110 MHz. The MCU supports ARM TrustZone-
M. We evaluate TRACES usage on a set of open-source
sensor applications1 and on programs from the BEEBS
benchmark suite [51], detailed in Table 1. Additionally, we
implement all Vrf’s operations in Python. TRACES TCB
is implemented with 2383 lines of C code. The Super-
visor (including the NSC) accounts for 1250 lines, the
CFA Engine – 861 lines (including SHA256 and HMAC
formally verified implementations), and the CFV Resolver
– 272 lines. In total, TRACES TCB requires 30.8 KBytes of
program memory.

Table 1 details the tested applications. For the evalu-
ated applications, instrumentation alone adds 0.2-12.8ms of
runtime overhead. Due to the lack of custom hardware to
detect branches, the same instrumentation is required in any
TEE-based CFA, irrespective of TRACES added guarantees.
Repeated loops with internal branching cause more signif-
icant increases in programs like prime, crc32, and sglib-
arraybinsearch (abbreviated search). Table 1 also shows
the number of control flow transfers in each application
execution. We note, however, that this number does not
always reflect the size of CFLog due to TRACES optimization
to replace static loops with counters (recall Sec. 6).

1. Some applications required small modifications (ports) to run on ARM
Cortex-M.

9

Figure 5: End-to-end runtime comparison: baseline App,
best-effort CFA, and runtime auditing with TRACES.

7.1. End-to-End Runtime

We measure the end-to-end runtime to execute these
applications, i.e., the time between Vrf’s initial request and
the receipt of TRACES’s last report at the end of App’s
execution. The end-to-end runtime depends on several fac-
tors, such as the characteristics of the application (shown in
Table 1) and the configuration of TRACES triggers. Among
those, the size of CFLog dedicated memory has a strong
influence on the overhead because it determines the rate
of [T3] trigger, affecting the time spent generating and
transmitting each partial execution report.

We compare the end-to-end App runtime in three
settings: original App without generation of any run-
time evidence (baseline), App with best-effort CFA (ISC-
FLAT [29]), and App with TRACES runtime auditing/guar-
anteed remediation guarantees. For a fair comparison to
standard CFA, we set TRACES [T1] and [T3] triggers to
large values to ensure that only one report is transmitted
by TRACES. This is because most CFA approaches do not
support the delivery of partial CFLog-s, simply aborting
execution when CFLog-dedicated memory is full.

Fig. 5 presents this comparison. Measured times are the
average of 20 executions of each step in each application.
Standard deviations in all cases are less than 1% and omitted
from the figure. The end-to-end time varies linearly with
the size of CFLog, resulting in ≈12.5-268ms of additional
runtime across different applications.

Fig. 6 further breaks down TRACES end-to-end runtime
overheads (for each tested App) according to individual
steps in TRACES’s protocol. The time associated with re-
ceiving and authenticating messages from Vrf is application-
independent. On the other hand, the overhead associated
with the execution of instrumented instructions, as well as
MAC-ing/transmitting/verifying the report, increases with
the complexity of App-s. The only steps unique to TRACES,
compared to CFA, are the steps for receiving and authenti-
cating Vrf’s response (containing Chal′ and their next-action
decision) and steps to process this response.

Fig. 6 shows that the total time taken is dominated by the
transmission of generated reports, especially for applications
with large CFLog-s. Hence, the size of CFLog-s influences
the total end-to-end runtime the most. Similar to Fig. 5,

Figure 6: End-to-end runtime breakdown according to steps
in Protocol 1.

Figure 7: End-to-end overhead as CFLog increases

times reported in Fig. 6 are the average of 20 measurements.
Standard deviations in all cases are less than 1%.

Next, we experiment by varying the size of CFLog from 1
to 13 KBytes. In this experiment, we disable the remaining
triggers ([T1], [T2]) in order to guarantee that only [T3]
triggers occur. Fig. 7 shows TRACES’s end-to-end runtime
increase compared to the baseline, where Prv contains an
unlimited CFLog storage and generates one report (i.e., the
TRACES runtime reported in Fig. 5).

7.2. Attack Detection Delay

While TRACES ensures that CFLog is received by Vrf,
there is a brief period (in between triggers) in which de-
tection by Vrf is delayed. We refer to this period as the
maximum “attack window”. Two parameters can impact the
attack window: (1) the period of [T1], which determines
the maximum frequency of report generation, and (2) the
maximum size of CFLog. The impact of the maximum
CFLog size on the attack window further depends on the
“branch density” of App, i.e., App’s rate of branch instruc-
tions executed. Fig. 8 illustrates the relationship between
the maximum CFLog size and the attack window (in CPU
cycles) for various branch density values (each line in Fig. 8
representing a different density). We note that the time to
communicate and verify the report does not affect the attack
window. This is because during that time, Prv remains in
the Secure World.

If the branch density remains constant, decreasing the
maximum CFLog size will lead to a shorter attack window;
increasing CFLog size will result in a longer attack window.

10

Figure 8: Attack window as CFLog increases

Furthermore, a shorter attack window reduces the time for
Adv to interfere with App’s execution. However, it also
causes an increase in the end-to-end runtime due to the
generation of more reports. This results in an interesting
trade-off for TRACES parameter choices. For optimal per-
formance in the on-demand sensing setting, [T1] and [T3]
should be configured to meet the time and CFLog storage
required for App’s benign execution. Alternatively, [T1] and
[T3] can be set to lower values to reduce the attack window
by generating more frequent reports (at the price of more
frequent transmission overhead).

Finally, we note that the less-strict verification policy
discussed in Sec. 5.2 further impacts the attack window
since the time for Vrf to detect the malicious behavior in the
less-strict setting could increase by up to one [T1] trigger
period.

7.3. Exploit Detection and CFA Verification

To exemplify TRACES functionality, we evaluate a vul-
nerable program containing a crafted exploit. We implement
a sensor system intentionally designed to contain a buffer
overflow vulnerability. In this App, Prv reads from an input
buffer to determine which sensor software to execute (Ul-
trasonic, Temperature, or both) and how many readings to
perform. This application reads from the input until a stop
character is received. After reading the input, the command
is parsed, and the sensor readings are performed based on
the parsed input. Since there is no array bound check while
reading from the input buffer, the return address stored on
the stack can be overwritten to cause arbitrary behavior; in
our example, malicious input causes the program to return
to the function that reads the input, effectively causing
an infinite loop and preventing any sensor readings from
occurring thereafter. Since this attack overwrites a return
address, the malicious return address value is written to
CFLog. Based on Prv’s runtime report, Vrf must determine
if Prv has been compromised. Vrf first always checks the
authenticity of the report and HPMEM to ensure that App’s
instrumented binary was indeed executed. If these checks
succeed, as they do with the example attack, Vrf examines
CFLog. To verify CFLog, Vrf emulates a shadow stack to
validate return addresses shown in CFLog and utilizes App’s
CFG to validate the execution trace. As the (significantly
more expensive) verification process is outsourced to Vrf,

it does not incur additional overhead on the Prv. After
identifying the illegal address caused by the buffer over-
flow, Vrf initiates remediation. This example, including the
vulnerable software and resulting CFLog, is available on
TRACES prototype public repository [34].

8. Related Work

Remote Attestation (RA): RA architectures are gen-
erally classified in three types: software-based (or key-
less), hardware-based, and hybrid. Software-based architec-
tures [58], [59], [60], [61], [18], [11], [62], [16] require
no hardware support. However, they require strong assump-
tions about Adv capabilities and implementation optimality.
Hardware-based architectures [63], [64], [65], [20], [15] rely
on standalone cryptographic coprocessors (e.g., TPMs [66])
or complex support from the CPU instruction set architec-
ture (e.g., Intel SGX [67]). For contexts in which standalone
hardware is too costly, hybrid architectures [8], [7], [9],
[10], [12], [22] have been proposed. Hybrid architectures
aim to combine the low hardware cost of software-based ap-
proaches with the security guarantees offered by hardware-
based approaches through hardware/software co-designs for
RA. Hybrid RA has also been extended to provide Vrf with
a Proof-of-Execution (PoX) [68], [69] as unforgeable proof
that an attested binary executed its outputs were generated
by the execution.

CFA and Runtime Attestation: C-FLAT [23] proposed
the concept of CFA by leveraging ARM TrustZone to detect
and log control flow transfers. In C-FLAT, the binary is
instrumented at branching instructions to trap execution to
the Secure World. Once in the Secure World, the branch-
ing information is added to a hash chain. At the end of
execution, C-FLAT’s hash chain produces a unique value
representing the attested program’s control flow path. Sim-
ilarly to C-FLAT, TRACES and many later techniques use
App instrumentation and TEE support for CFA [45], [46],
[27], [48]. To remove the requirement of instrumentation,
several hardware-based CFA approaches [30], [31], [32] pro-
pose using customized hardware to handle detecting control
flow transfers and attesting CFLog, thus removing the need
for instrumentation and requiring a TrustZone-equipped de-
vice. In hardware-based CFA, the CPU is extended with
dedicated hardware for detecting branch instructions and
extracting information about the control flow event (such as
the source/destination addresses and type of branch instruc-
tion). In addition, they use a hardware-based hash engine
to produce a CFA report for Vrf. Although these techniques
remove the requirement for instrumentation, the hardware
cost of a fully hardware-based solution is too costly for
MCUs. Tiny-CFA [28] reduces the hardware cost signifi-
cantly by executing an instrumented binary atop APEX [68],
a low hardware-cost PoX architecture. Since only minimal
hardware changes are required, Tiny-CFA demonstrates CFA
that is realistic for low-end MCUs. ACFA [33] reduces the
hardware cost without requiring instrumentation by imple-
menting hardware for branch detection/logging and using
software for generating the report.

11

TABLE 2: Qualitative comparison to related work
’Off-the-shelf’ Verbatim CFLog Runtime Remote Runtime Hardware

Related Work Support CFLog Slicing Auditing Healing Overhead Overhead
C-FLAT [23] Yes No No No No Yes No

OAT [27] Yes No No No No Yes No
ARI [48] Yes No No No No Yes No

LO-FAT [30] No No No No No No Yes
ATRIUM [32] No No No No No No Yes
LiteHAX [31] No Yes Yes No No No Yes
Tiny-CFA [28] No Yes No No No Yes Yes

TRACES Yes Yes Yes Yes Yes Yes No

C-FLAT and other early approaches return a single hash
of CFLog, putting Vrf at risk of path explosion during the
verification process. To avoid this problem, several recent
approaches record a verbatim log of all control flow trans-
fers [33], [28], [70]. A limitation to logging all control flow
transfers verbatim is that CFLog quickly fills all memory
available to the low-end MCU. Because of this, several
approaches aim to reduce the size of the verbatim CFLog

by only logging control flow transfers that cannot be de-
termined statically in their entirety [27], [31], [46], [48]
by reducing the storage size and sending send a series of
intermediate log slices [45], [33], recording encodings of
full addresses [27], [31], [46], or recording forward edges
verbatim alongside a hash-chain of the return addresses [27],
[48]. TRACES logs only non-deterministic branches and
supports CFLog slicing to provide Vrf fine-grained reports
while incurring minimal and fixed memory overheads.

Comparison to Related Work. Table 2 compares
TRACES to most closely related runtime attestation tech-
niques. Similar to our work, C-FLAT [23], OAT [27],
and ARI [48] propose CFA for off-the-shelf ARM MCUs
equipped with TrustZone-M. Thus, they incur a similar
runtime overhead due to the required instrumentation for
recording control flow events. Unlike these techniques,
TRACES actively triggers the transmission of whole or
partial CFLog-s, guarantees delivery of this evidence, and
enables Vrf-triggered device healing in commercial MCUs.
Tiny-CFA [28] combines instrumentation atop a hardware-
assisted PoX architecture [68] to achieve CFA. Hence, it also
incurs runtime overhead. Additionally, Tiny-CFA requires
custom hardware support That is not available off-the-shelf.
LO-FAT [30], ATRIUM [32], and LiteHAX [31] are fully-
hardware based approaches. In contrast to TRACES, they
avoid the runtime overhead cost in exchange for additional
hardware features. Because of this, they require new MCUs
to be fabricated before they can be used. Similarly, these
are techniques for attestation rather than auditing, so they
do not offer the same guarantees as TRACES.

Active CFA (ACFA) and Device Healing: As discussed
in Sec. 1, ACFA is a hybrid (software/hardware) based
approach to augment the capabilities of CFA by leveraging
the concept of “active roots of trust” [71] to provide control
flow auditing. As CFLog is built, a (custom hardware-based)
active root of trust interrupts execution to attest the binary
and CFLog. ACFA also supports a remediation phase after
a compromise is detected. However, contrary to TRACES,
ACFA requires custom hardware modifications and is there-
fore not applicable to current devices. Other approaches
also discuss remote device healing [72], [73], [74], [75].
Unlike TRACES, they either rely on custom hardware, do

not consider runtime auditing, and/or use attestation (with-
out reliable delivery) to verify the healing action without
guaranteeing its occurrence when Prv is compromised.

ARM TrustZone: Prior work has used TrustZone-M
to enhance various aspects of embedded system security:
availability in real-time systems [76], low latency secure in-
terrupts [40], Address-Space Layout Randomization (ALSR)
without memory management units [77], and virtualiza-
tion [78]. For a more comprehensive discussion of Trust-
Zone and related applications, we refer the reader to [37].

9. Conclusion

We proposed TRACES: an approach for runtime auditing
and guaranteed remediation aimed at commodity MCUs
equipped with TEEs. TRACES guarantees that control flow
logs that contain compromise evidence are always received
by a remote verifier. This enables analysis of these logs
to pinpoint unknown vulnerabilities and support their re-
mediation. To our knowledge, TRACES is the first design
to support these security services without requiring custom
hardware modifications. We implement a fully functional
and open-source TRACES prototype [34] based on the ARM
TrustZone-M TEE atop the commodity ARM Cortex-M33
MCU.

Acknowledgements

We sincerely thank the paper’s anonymous shepherd and
ACSAC’24 reviewers for their constructive comments and
feedback. RIT authors were partly funded by the National
Science Foundation (SaTC award #2245531). PSU author
was partly supported by the ASEAN IVO (www.nict.go.jp/
en/asean ivo/) project, Artificial Intelligence Powered Com-
prehensive Cyber-Security for Smart Healthcare Systems
(AIPOSH), funded by NICT (www.nict.go.jp/en/).

References

[1] J. Deogirikar and A. Vidhate, “Security attacks in iot: A survey,” in
2017 International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC). IEEE, 2017, pp. 32–37.

[2] J. Vijayan, “Stuxnet renews power grid security con-
cerns,” https://www.computerworld.com/article/1511749/
stuxnet-renews-power-grid-security-concerns-2.html, june 2010.

[3] J. Giraldo, A. Cárdenas, and N. Quijano, “Integrity attacks on real-
time pricing in smart grids: Impact and countermeasures,” IEEE
Transactions on Smart Grid, vol. 8, no. 5, pp. 2249–2257, 2016.

[4] M. N. Nafees, N. Saxena, A. Cardenas, S. Grijalva, and P. Bur-
nap, “Smart grid cyber-physical situational awareness of complex
operational technology attacks: A review,” ACM Computing Surveys,
vol. 55, no. 10, pp. 1–36, 2023.

[5] H. Kayan, M. Nunes, O. Rana, P. Burnap, and C. Perera, “Cybersecu-
rity of industrial cyber-physical systems: a review,” ACM Computing
Surveys (CSUR), vol. 54, no. 11s, pp. 1–35, 2022.

[6] I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik,
“Towards remotely verifiable software integrity in resource-
constrained iot devices,” IEEE Communications Magazine, 2024.

12

www.nict.go.jp/en/asean_ ivo/
www.nict.go.jp/en/asean_ ivo/
www.nict.go.jp/en/
https://www.computerworld.com/article/1511749/stuxnet-renews-power-grid-security-concerns-2.html
https://www.computerworld.com/article/1511749/stuxnet-renews-power-grid-security-concerns-2.html

[7] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART:
Secure and minimal architecture for (establishing dynamic) root of
trust,” in NDSS, vol. 12, 2012, pp. 1–15.

[8] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified Hardware/Software Co-Design for
remote attestation,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1429–1446.

[9] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “TyTAN: Tiny trust anchor for tiny devices,” in Proceedings of
the 52nd annual design automation conference, 2015, pp. 1–6.

[10] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A security architecture for tiny embedded devices,” in Proceedings
of the Ninth European Conference on Computer Systems, 2014, pp.
1–14.

[11] M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation
approach for resource-constrained iot devices,” in 2020 ACM/IEEE
11th International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 2020, pp. 247–258.

[12] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “HYDRA: hybrid
design for remote attestation (using a formally verified microkernel),”
in Proceedings of the 10th ACM Conference on Security and Privacy
in wireless and Mobile Networks, 2017, pp. 99–110.

[13] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and
G. Tsudik, “On the toctou problem in remote attestation,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2921–2936.

[14] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security, 2004, pp. 132–145.

[15] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling,
“Sancus 2.0: A low-cost security architecture for iot devices,” ACM
Transactions on Privacy and Security (TOPS), vol. 20, no. 3, pp.
1–33, 2017.

[16] L. Petzi, A. E. B. Yahya, A. Dmitrienko, G. Tsudik, T. Prantl, and
S. Kounev, “SCRAPS: Scalable collective remote attestation for Pub-
Sub IoT networks with untrusted proxy verifier,” pp. 3485–3501,
2022.

[17] I. D. O. Nunes, G. Dessouky, A. Ibrahim, N. Rattanavipanon, A.-
R. Sadeghi, and G. Tsudik, “Towards systematic design of collective
remote attestation protocols,” in 2019 IEEE 39th International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 1188–1198.

[18] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PISTIS: Trusted
computing architecture for low-end embedded systems,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3843–
3860.

[19] M. M. Rabbani, E. Dushku, J. Vliegen, A. Braeken, N. Dragoni, and
N. Mentens, “Reserve: Remote attestation of intermittent iot devices,”
in Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, 2021, pp. 578–580.

[20] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “SACHa: Self-
attestation of configurable hardware,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
746–751.

[21] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A min-
imalist approach to remote attestation,” in 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2014,
pp. 1–6.

[22] F. Brasser, K. B. Rasmussen, A.-R. Sadeghi, and G. Tsudik, “Remote
attestation for low-end embedded devices: the prover’s perspective,”
in Proceedings of the 53rd Annual Design Automation Conference,
2016, pp. 1–6.

[23] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for em-
bedded systems software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
743–754.

[24] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[25] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,” ACM
Transactions on Information and System Security (TISSEC), vol. 15,
no. 1, pp. 1–34, 2012.

[26] M. Ammar, A. Caulfield, and I. D. O. Nunes, “Sok: Runtime in-
tegrity,” arXiv preprint arXiv:2408.10200, 2024.

[27] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity
of embedded devices,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1433–1449.

[28] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-CFA: Minimal-
istic control-flow attestation using verified proofs of execution,” in
2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 641–646.

[29] A. J. Neto and I. D. O. Nunes, “Isc-flat: On the conflict between
control flow attestation and real-time operations,” in 2023 IEEE 29th
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2023, pp. 133–146.

[30] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in Proceedings of the 54th Annual Design
Automation Conference 2017, 2017, pp. 1–6.

[31] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in
2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 2018, pp. 1–8.

[32] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under
memory attacks,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2017, pp. 384–391.

[33] A. Caulfield, N. Rattanavipanon, and I. D. O. Nunes, “ACFA: Secure
runtime auditing & guaranteed device healing via active control
flow attestation,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
5827–5844. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/caulfield

[34] A. Caulfield, A. J. Neto, N. Rattanavipanon, and I. De Oliveira Nunes,
“TRACES Prototype Repository,” 2024. [Online]. Available: https:
//github.com/RIT-CHAOS-SEC/TRACES/

[35] A. Ltd, “Trustzone technology for armv8-m architecture version 2.1,”
https://developer.arm.com/documentation/100690/0201/, 2019.

[36] ARM Security Technology - Building a Secure System using TrustZone
Technology, ARM Limited, 2009.

[37] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehen-
sive survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp.
1–36, 2019.

[38] Memory Protection Unit (MPU) Version 1.0, ARM, 2016.

[39] STMicroelectronics, RM0438 Reference manual: STM32L552xx and
STM32L562xx advanced Arm-based 32-bit MCUs, December 2020.

[40] R. Pan and G. Parmer, “Sbis: Application access to safe, baremetal
interrupt latencies*,” in 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2022, pp. 82–94.

[41] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[42] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security,
2007, pp. 552–561.

13

https://www.usenix.org/conference/usenixsecurity23/presentation/caulfield
https://www.usenix.org/conference/usenixsecurity23/presentation/caulfield
https://github.com/RIT-CHAOS-SEC/TRACES/
https://github.com/RIT-CHAOS-SEC/TRACES/
https://developer.arm.com/documentation/100690/0201/

[43] Z. Ma, X. Tan, L. Ziarek, N. Zhang, H. Hu, and Z. Zhao, “Return-
to-non-secure vulnerabilities on arm cortex-m trustzone: Attack and
defense,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2023, pp. 1–6.

[44] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM symposium on information, computer and communications
security, 2011, pp. 30–40.

[45] F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti, “ScaRR:
Scalable runtime remote attestation for complex systems,” in 22nd
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019), 2019, pp. 121–134.

[46] Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma,
“ReCFA: resilient control-flow attestation,” in Annual Computer Se-
curity Applications Conference, 2021, pp. 311–322.

[47] M. Geden and K. Rasmussen, “Hardware-assisted remote runtime
attestation for critical embedded systems,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). IEEE, 2019, pp.
1–10.

[48] J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and
N. Zhang, “ARI: Attestation of real-time mission execution integrity,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023,
pp. 2761–2778.

[49] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance
mechanisms for secure embedded systems,” in 17th International
Conference on VLSI Design. Proceedings. IEEE, 2004, pp. 605–
611.

[50] J. Obermaier and V. Immler, “The past, present, and future of physical
security enclosures: from battery-backed monitoring to puf-based
inherent security and beyond,” Journal of Hardware and Systems
Security, vol. 2, no. 4, pp. 289–296, 2018.

[51] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, 2013.

[52] Seeed-Studio, “Ultrasonic Ranger,” Jun. 2015. [Online]. Avail-
able: https://github.com/Seeed-Studio/LaunchPad Kit/tree/master/
Grove Modules/ultrasonic ranger

[53] Y. Tournade, “ArduinoPocketGeiger Github Repository,” https://
github.com/MonsieurV/ArduinoPocketGeiger, 2020.

[54] T. Walker, “OpenSyringePump,” Apr. 2022. [Online]. Available:
https://github.com/manimino/OpenSyringePump

[55] Seeed-Studio, “Temperature Sensor,” Jun. 2015. [On-
line]. Available: https://github.com/Seeed-Studio/LaunchPad Kit/
tree/master/Grove Modules/temp humi sensor

[56] M. Hart, “Tinygps++,” http://arduiniana.org/libraries/tinygpsplus/,
2014.

[57] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 1789–1806.

[58] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in 12th USENIX Security Symposium (USENIX
Security 03), 2003.

[59] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT:
Software-based attestation for embedded devices,” in IEEE Sympo-
sium on Security and Privacy, 2004. Proceedings. 2004. IEEE, 2004,
pp. 272–282.

[60] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of the twentieth ACM
symposium on Operating systems principles, 2005, pp. 1–16.

[61] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for
key establishment in sensor networks,” in Distributed Computing in
Sensor Systems: 4th IEEE International Conference, DCOSS 2008
Santorini Island, Greece, June 11-14, 2008 Proceedings 4, 2008, pp.
372–385.

[62] S. Surminski, C. Niesler, F. Brasser, L. Davi, and A.-R. Sadeghi,
“Realswatt: remote software-based attestation for embedded devices
under realtime constraints,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2890–2905.

[63] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-
a coprocessor-based kernel runtime integrity monitor.” in USENIX
security symposium. San Diego, USA, 2004, pp. 179–194.

[64] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in 2012
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 239–
253.

[65] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1-2, pp. 13–22, 2008.

[66] Trusted Computing Group., “Trusted platform module (tpm),”
2017. [Online]. Available: http://www.trustedcomputinggroup.org/
work-groups/trusted-platform-module/

[67] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016. https://eprint.iacr.org/2016/086,
Tech. Rep.

[68] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“APEX: A verified architecture for proofs of execution on remote
devices under full software compromise,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 771–788.

[69] A. Caulfield, N. Rattanavipanon, and I. De Oliveira Nunes, “ASAP:
reconciling asynchronous real-time operations and proofs of execution
in simple embedded systems,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, 2022, pp. 721–726.

[70] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Dialed: Data integrity
attestation for low-end embedded devices,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021, pp. 313–318.

[71] E. Aliaj, I. D. O. Nunes, and G. Tsudik, “GAROTA: Generalized
active root-of-trust architecture (for tiny embedded devices),” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 2243–
2260.

[72] A. Ibrahim, A.-R. Sadeghi, and G. Tsudik, “Healed: Healing &
attestation for low-end embedded devices,” in Financial Cryptography
and Data Security: 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18–22, 2019, Revised Selected
Papers 23. Springer, 2019, pp. 627–645.

[73] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and
G. Tsudik, “Pure: Using verified remote attestation to obtain proofs
of update, reset and erasure in low-end embedded systems,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2019, pp. 1–8.

[74] M. Ammar and B. Crispo, “Verify&revive: Secure detection and
recovery of compromised low-end embedded devices,” in Annual
Computer Security Applications Conference, 2020, pp. 717–732.

[75] M. Huber, S. Hristozov, S. Ott, V. Sarafov, and M. Peinado, “The
lazarus effect: Healing compromised devices in the internet of small
things,” pp. 6–19, 2020.

[76] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “Rt-tee: Real-time system
availability for cyber-physical systems using arm trustzone,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
352–369.

[77] L. Luo, X. Shao, Z. Ling, H. Yan, Y. Wei, and X. Fu, “faslr: Function-
based aslr via trustzone-m and mpu for resource-constrained iot
systems,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 120–
17 135, 2022.

[78] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtual-
ization on trustzone-enabled microcontrollers? voilà!” in 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2019, pp. 293–304.

14

https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/MonsieurV/ArduinoPocketGeiger
https://github.com/MonsieurV/ArduinoPocketGeiger
https://github.com/manimino/OpenSyringePump
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
http://arduiniana.org/libraries/tinygpsplus/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/

	Introduction
	Background
	TrustZone for ARM Cortex-M MCUs
	Remote Attestation (RA)
	Control Flow Attestation (CFA)

	TRACES Overview
	Goals
	Architecture at a High-Level
	TRACES Security Intuition.

	TRACES in Detail
	Scope and System Model
	Adversary Model
	TRACES Workflow
	 TRACES Protocol

	Security Analysis
	Report Forgery
	Preventing Evidence Delivery
	Preventing Remediation Actions

	Implementation Details
	Instrumentation.
	Module Configurations:

	Prototype Evaluation
	End-to-End Runtime
	Attack Detection Delay
	Exploit Detection and CFA Verification

	Related Work
	Conclusion
	References

