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Abstract—This paper provides a systematic exploration of Con-
trol Flow Integrity (CFI) and Control Flow Attestation (CFA)
mechanisms, examining their differences and relationships.
It addresses crucial questions about the goals, assumptions,
features, and design spaces of CFI and CFA, including their
potential coexistence on the same platform. Through a com-
prehensive review of existing defenses, this paper positions CFI
and CFA within the broader landscape of runtime defenses,
critically evaluating their strengths, limitations, and trade-offs.
The findings emphasize the importance of further research to
bridge the gaps in CFI and CFA and thus advance the field
of runtime defenses.

Index Terms—Control Flow Integrity, Control Flow Attesta-
tion, Software Security, System Security.

1. Introduction

Unsafe programming languages like C and C++ are
still prevalent, especially for lower-level system develop-
ment [1]. Memory safety bugs, such as buffer overflows,
are prominent enablers of attacks on programs written in
such languages. Attacks that modify/inject code can be (to
some extent) mitigated by existing defenses. Among them,
Data Execution Prevention (DEP) and Write-Xor-eXecute
(W⊕X) [2] policies can prevent user-space code injection
attempts at runtime. Secure boot can locally enforce boot-
time code integrity (including the integrity of privileged
software, e.g., stage 1 and 2 boot-loaders and kernel) [3],
[4]. Static (i.e., boot-time or load-time) Remote Attestation
(RA) can further convince a remote party of the integrity of
the booted code chain [5], [6].

On the other hand, code-reuse attacks [7] (exemplified
by Return Oriented Programming – ROP [8] – and Jump
Oriented Programming – JOP [9]) can pose significant
threats without modifying the installed code, even in the
presence of existing defenses. They instead exploit memory
corruption vulnerabilities to trigger out-of-order execution
of sub-sequences of instructions (known as gadgets) within
a program. This can result in unintended behavior even
when code modifications are prevented. As illustrated in
Figure 1, code-reuse attacks can be broadly classified into
two categories: control flow hijacking and data-only attacks.
The former directly corrupts memory storing code pointers,
e.g., return addresses [8] and function pointers [9] during

execution. The latter changes control flow related data,
e.g., loop/conditional variables or counters, without causing
control flow transfers that do not exist in the Control Flow
Graph (CFG) of the target program [10], [11].

Much attention has been devoted to code-reuse attack
mitigations due to their popularity and effectiveness [12]
with several protection and detection mechanisms proposed
in the past few decades [13]. Most notably, Control Flow
Integrity (CFI) mechanisms for both forward and backward
edge protection have been widely recognized as key mit-
igations [14], [15]. Ergo, recent years have seen efforts
to adopt both academic and industry proposals, each with
their own sets of trade-offs [15]–[17]. Nevertheless, only a
few of these proposals, e.g., LLVM CFI [18], have become
available in production compilers, despite known limitations
in terms of granularity and compatibility [17], [19].

On the hardware side, both ARM and Intel have
equipped their latest-generation architectures with new ex-
tensions to assist control flow attack mitigations. Exam-
ples include Pointer Authentication (PA), Memory Tagging
Extension (MTE), and Branch Target Identification (BTI)
features from ARM [20], and the Control Flow Enforcement
Technology (CET) from Intel [21]. While various contem-
porary CFI approaches leverage these extensions in their
designs [22]–[29], gaps still persist [30]–[32].

In a parallel line of efforts, Control Flow Attestation
(CFA) [33]–[43] has been proposed to enable remote Ver-
ifier(s) (Vrf) to ascertain the execution integrity (including
the absence of control flow attacks/violations) of an op-
eration of interest performed by a remote device (called
a prover or Prv). In its ideal form, CFA generates an
authenticated log containing all dynamically defined con-
trol transfers occurring during the execution of an attested
operation of interest1. Nonetheless, similar to CFI, coarser-
grained CFA approaches are also possible [40], establishing
trade-offs between the completeness of CFA evidence and
performance, especially when overheads related to storage
and transmission of said evidence to Vrf are a concern (e.g.,
when Prv is a resource-constrained embedded platform).

Notably, not all CFA techniques guarantee that CFA
evidence is received by Vrf. While this is sufficient for

1. Note that some CFA variations aim at enabling continuous verification
of all control flow transfers on Prv, rather than focusing on individual
operations of interest. For more details, see Section 2.3.



attestation, wherein a Vrf would not trust responses/values
received from Prv unless accompanied by CFA evidence,
it does not support secure runtime auditing [41], [42]. The
latter aims to ensure that CFA evidence always reaches Vrf,
even if Prv is compromised, allowing for attack root cause
analysis and appropriate remediation.

CFI and CFA goals can be viewed as runtime analogs
of boot-time code integrity guarantees offered by secure
boot vs. static RA. While CFI enables in loco detection of
control flow violations (typically triggering exceptions when
detected), CFA provides remotely verifiable (unforgeable)
evidence of the control flow path followed by an operation
of interest executed by a Prv device, thus enabling control
flow path analysis by a remote Vrf.

1.1. Motivation & Intended Contributions

Although CFI and CFA approaches exist due to the
common threat of control flow attacks, their different goals,
designs, and capabilities are not yet systematically discussed
in the literature. Naturally, the current lack of systematiza-
tion prompts questions such as:
[Q1] How do CFA and CFI goals differ?
[Q2] What are the assumptions, features, and design spaces

of CFI vs. CFA, as well as their similarities and
differences?

[Q3] What makes CFA different from remotely attesting ad-
herence to a CFI policy? Could CFA uncover attacks
that CFI would not (and vice-versa)?

[Q4] Could CFI and CFA coexist on the same platform?
Additionally, there is often confusion surrounding the

terminology in the context of control flow-related mecha-
nisms (e.g., prevention vs. local detection vs. remote detec-
tion; runtime attestation vs. runtime auditing; fine-grained
vs. coarse-grained approaches; etc.) and their relationship
to memory safety and compartmentalization defenses. This
ambiguity makes it challenging to precisely understand the
guarantees provided by each approach. Therefore, it be-
comes crucial to delve into such nuances to clearly grasp the
benefits of each approach and their roles within the broader
landscape of runtime software defenses.

In this paper, we explore the relationships and differ-
ences between CFI and CFA by systematically examining
the fundamental goals and trade-offs associated with both
approaches. Towards this goal, we present a systematic
review of existing runtime defenses to provide context
and position CFI and CFA within the broader landscape
of execution integrity defenses. Subsequently, we classify
recent work in CFI and CFA according to design choices,
weighing their advantages and disadvantages and aiming to
grasp a better understanding of existing limitations. Finally,
we discuss missing links between CFI and CFA and future
research avenues.

1.2. Literature Selection Criteria

The selection criteria for the inclusion of academic or
industrial proposals in our systematization are as follows:

● We aim to include all available literature on CFA due
to the manageable number of existing proposals (except
unintended oversights).
● Given the extensive volume of CFI proposals, we use the

following criteria for selection within the past 10 years:
● Papers published in prestigious security-focused con-

ferences such as USENIX Security, IEEE S&P, CCS,
and NDSS.

● Papers with more than 100 citations, indicating their
broad influence in subsequent work.

● Papers or proposals adopted in mainstream compilers
or hardware architectures.

1.3. Scope & Related Systematizations

Memory safety [44]–[47] approaches aim to eliminate
or reduce vulnerabilities that could lead to control/data flow
attacks and data corruption during software development,
i.e., before deployment. These typically work in two ways.
First, memory safety can be a built-in security feature of
programming languages such as Go and Rust. Rust [48],
for instance, utilizes static compile-time analysis to optimize
safety checks and memory management decisions, such as
bounds check elimination, while incorporating mechanisms
(e.g., value ownership and borrowing) to ensure temporal
safety. Second, memory safety can be obtained as memory-
safe dialects of memory-safe programming languages. An
example of this is Checked C [49], which augments C with
spatial memory safety checks introduced at compilation time
and/or runtime. This involves refining the C type system
with safe pointer and array types with stricter usage mod-
els. Even so, this approach provides partial protection and
presents compatibility challenges with legacy software.

A third category of techniques focuses on fortifying
and isolating code through runtime checks [50]. These
techniques include compartmentalization [51], software fault
isolation [52], memory layout randomization [53], as well as
CFI. While the primary goal of this class is to detect and iso-
late runtime violations, some literature still categorizes these
methods as memory safety techniques. There is, however,
no clear consensus on whether the term “memory safety”
should be limited to the first two categories or expanded
to include this third one (and possibly others). This lack
of agreement has led to confusion over the scope of the
term [44].

Terminology aside, our work focuses on systematizing
and discussing the relationship between runtime integrity
enforcement [14] and runtime attestation [33] methods used
after software deployment (hence “runtime”). This is com-
plemented by existing systematizations focused, for in-
stance, on memory safety or compartmentalization. Related
to our work, Szekeres et al. [13] provide a general model
of memory corruption attacks, which serves as a foundation
for identifying the different policies that can prevent such
attacks. Song et al. [54] offer a systematic overview of
sanitizers, emphasizing their role in uncovering security
vulnerabilities. Larsen et al. [55] present a comprehensive
and unified overview of software diversification approaches,
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Figure 1. Classes of memory corruption-based attacks to software integrity.

highlighting their inherent trade-offs. Burow et al. [56]
conduct a thorough evaluation of the design space of shadow
stacks, considering performance, compatibility, and security
aspects. Contrary to the aforementioned efforts, this SoK
focuses on shedding light and evaluating recent CFI and
CFA methods as well as their relationship and differences.

2. A Lightning Tour

This section reviews code-reuse attacks and existing
defenses, highlighting the role of CFI and CFA in this
landscape.

2.1. Code Reuse Attack Background

Figure 1 illustrates the general classes of memory
corruption-based attacks. Code-reuse attacks are further
classified into control flow hijacking and data-only attacks.
At a high level, their difference lies in the former performing
control flow transfers that do not exist in the legitimate
CFG of the target program and the latter causing unintended
transfers via edges that exist in the CFG. The two cases
are depicted in Figure 2. Return Oriented Programming
(ROP) [8] and Jump Oriented Programming (JOP) [9] are
the two main categories of control flow hijacking attacks.
Both ROP and JOP stitch out-of-order sub-sequences of
instructions, so-called gadgets, to modify the control flow
path of the target program to perform a malicious action.
As their names indicate, ROP corrupts backward edges,
targeting gadgets that end with return instructions. JOP
corrupts forward edges, targeting gadgets that end with
indirect jump or call instructions.

Data-only attacks can be classified into Direct Data Ma-
nipulation (DDM) and Data Oriented Programming (DOP)
based on the type of non-control data being manipu-
lated [57]. DDM attacks can be as simple as illegally
modifying the value of a variable [10]. DOP attacks [11],
on the other hand, aim to perform expressive (often Turing-
complete) computations by chaining carefully selected DOP
gadgets, ensuring that the gadget chain forms a valid path
within the CFG. This is typically achieved by corrupting

Illegal transfer using existing edge

Figure 2. Control flow hijacking vs. Data-only attacks on a CFG.

non-control data, such as variables that define paths in
conditional statements and loop counters.

2.2. Runtime Defenses

Figure 3 illustrates the relationship between memory
vulnerabilities, runtime exploits, and associated defenses.
The primary categories of runtime defenses against memory
corruption-based attacks are illustrated in ( 2 - 5 ), which
have been adapted from [13] and [50] respectively. Software
testing tools, such as sanitizers [54] and fuzzers [58], act
as a front-line defense in the pre-deployment phase, where
the main goal is to find as many vulnerabilities as possible
and fix them. Boot- and Load-time software verification
mechanisms, such as Secure Boot [59], Measured Boot [60],
and Load-time attestation (e.g., the Linux Integrity Mea-
surement Architecture (IMA) for user-space software [61]),
are deployed as a primary shield in the post-deployment
phase to prevent booting/loading of non-authentic software.
However, the presence of memory corruption vulnerabilities
at runtime remains a concern after this stage. Therefore,
several runtime defenses have been proposed, each targeting
specific steps of the attack process. Considering the five
distinct attack steps ( 1 - 5 ) outlined in the general model
of memory corruption attacks from [13], Figure 3 illustrates
which class of defenses can counter each type of exploit
and at which step. As information leaks are not integrity
violations, they are not considered in Figure 1. In the
following, we summarize the individual attack steps and
relevant defenses:

1 Memory Vulnerability: Finding and exploiting a
memory corruption vulnerability is an essential requirement
for any of the runtime attacks considered in Figure 3. Illegal
access to a memory address, whether to read, write, or both,
depends on the particular vulnerability. We note that vul-
nerabilities that enable read-only access are (by themselves)
not sufficient to corrupt the execution integrity of the target
program.

2 Integrity Violation: Exploiting vulnerabilities that
grant illegal write access enables adversaries to tamper
with the various aspects of a program, including the (i)
program’s code (instructions in memory), (ii) control data
(e.g., return addresses and function pointers), and (iii)
non-control data (e.g., data variables and pointers). Isola-
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Figure 3. A high-level overview of defenses against memory corruption-based attacks with a focus on runtime defenses (expanded based on [13] and [50]).

tion and compartmentalization mechanisms play a crucial
role in enforcing access control permissions to mitigate
integrity violations. These mechanisms restrict the targets
that adversaries can access, often thwarting attacks at an
early stage or preventing their spread to the rest of the
system. For instance, access control mechanisms like the
AArch64 (Un)Privileged Execution Never feature [62] make
it significantly harder to directly corrupt program code [63].
Code Pointer Integrity (CPI) [64] is a security mechanism
that safeguards all code pointers and data pointers pointing
to code by storing them in an isolated memory area. Code
Pointer Separation (CPS) [64], a variant of CPI, isolates only
code pointers while leaving the protection of data pointers
to other measures for performance reasons. Software Fault
Isolation (SFI) [52], memory tagging [65], and capability-
based architectures (exemplified by CHERI [51]) operate at
various granularity levels to isolate larger software compo-
nents into distinct protection domains. These mechanisms
limit the consequences of attacks that exploit memory vul-
nerabilities by confining them within specific compartments.

3 Exploit Payload: If previous defenses are bypassed,
the adversary can inject payloads to manipulate the data and
control flows of the target program. In general, the pay-
load injection process requires knowledge of the program’s
memory layout. In response, software diversification aims
to impede the crafting of reusable exploits by introducing
uncertainty through randomization. For instance, Address
Space Layout Randomization (ASLR) [53] and Instruction
Set Randomization (ISR) [66] are lightweight defenses that
randomize memory layouts, making payload injection more
challenging for control flow hijacking and code-injection at-
tacks. Additionally, Data Space Randomization (DSR) [67]
can complicate data-only attacks. While these techniques
offer probabilistic guarantees, they significantly raise the
difficulty of runtime attacks.

4 Exploit Dispatch: To successfully launch sophis-
ticated attacks, the adversary needs to divert the target
program to operate on the injected payload. This step is
crucial for expressive code-reuse attacks such as ROP, where
the attack is initiated by manipulating the stack pointer to
execute a sequence of selected gadgets in a predetermined



order, with each gadget returning to a specific memory
address in the following gadget to implement the desired
attack behavior. Control Flow Integrity (CFI) [14] and Data
Flow Integrity (DFI) [68] are two commonly used defenses
to ideally detect and block control flow hijacking and data-
only attacks at this stage. These techniques involve imple-
menting and enforcing policies that must be followed during
program execution. However, contemporary literature shows
that maintaining gap-free policies is inherently challenging,
leaving potential exploit opportunities [19], [69], [70].

5 Exploit Execution: As discussed above, ensuring
the complete integrity of a victim program can be chal-
lenging. As a result, runtime attestation mechanisms have
been proposed as a last line of defense to enable remote
verification of code and execution integrity in a trustworthy
manner. These mechanisms aim to detect tampering with
code or violations of control/data flow. In addition, they also
provide means to convince a remote party of the execution
integrity of the target program during an operation of interest
and enable, in some cases, auditing root cause vulnerabil-
ities in case of exploits. In addition to measures such as
W⊕X [71] and DEP [2] policies, which are deployed to
prevent code-injection attacks, remote attestation approaches
of code binary [6], [72]–[74] are widely regarded as essential
for providing remotely verifiable evidence of binary integrity
at runtime. At any time during execution, they can be used
to attest that the code (including CFI/CFA instrumentation
instructions) remains untampered. RA becomes paramount
for most-privileged code (and single privilege systems, e.g.
bare-metal micro-controllers) where full disablement of run-
time code modifications implies the inability to perform
remote software updates [75]. Control Flow Attestation
(CFA) [33], [35] and Data Flow Attestation (DFA) [37],
[38], [76] approaches have emerged to specifically detect
and audit code-reuse attacks, enabling trustworthy remote
verification of control and data flow integrity respectively.

As shown in Figure 3, attestation mechanisms build atop
Roots of Trust (RoTs) as a foundation to provide trustworthy
evidence of system/software state that can be remotely ver-
ified. For instance, RoTs are utilized in several key aspects
of attestation mechanisms. They serve as a foundation for
securely measuring system state and/or installed software
(RoT for Measurement), securely storing attestation secret
keys (RoT for Storage), and/or signing attestation reports
(RoT for Reporting). Examples include Trusted Platform
Modules (TPMs) [77], DICE [78], hardware extensions in
Intel SGX-capable processors [79], ARM TrustZone-based
RoTs [80], [81], and various academic proposals such as
Keystone [82] and BYOTee [83], among others.

2.3. CFI & CFA: Definitions & Threat models

Considering their prominent status as actively researched
defenses, the rest of the paper systematically explores CFI
and CFA techniques, shedding light on their underlying
principles, relationships, trade-offs, and other crucial aspects
to provide insights into unclear considerations for adoption
in real-world scenarios.

Figure 4. Typical CFA Interaction

2.3.1. Control Flow Integrity (CFI). Originally proposed
by Abadi et al. [14], CFI is a policy-based mitigation against
control flow hijacking attacks, restricting the execution path
of a program at runtime based on a pre-computed CFG. In
principle, enforcing CFI on a target program involves:
● Generation of an over-approximated CFG, denoted ≈CFG.
● Enforcement of control flow to comply with ≈CFG

through Reference Monitors (RMs), which are software-
or hardware-based runtime checks that verify the target
of any indirect branch instruction at runtime.
≈CFG can be generated statically (as proposed origi-

nally [14]) or dynamically, as seen in following propos-
als [84], [85]. When ≈CFG ≡ CFG, it is generally diffi-
cult for an adversary to manipulate control flow and alter
a program’s intended behavior without detection by the
activated or inserted RMs. However, statically determin-
ing strict CFGs for complex programs remains an open
challenge [86], leading many practical approaches to over-
approximate ≈CFG.

2.3.2. Control Flow Attestation (CFA). CFA focuses on
producing unforgeable evidence of the control flow path
followed by an executable on a prover device (Prv). This
evidence allows a remote verifier (Vrf) to assess the trust-
worthiness of execution and its outcomes. CFA is an (on-
demand) challenge-response protocol, as shown in Figure 4.

A CFA instance starts with Vrf sending a request con-
taining a cryptographic challenge to Prv. Upon receiving the
request, Prv must execute the operation requested by Vrf
(either specified implicitly or explicitly within the request).
During the execution of the requested task, an RoT in Prv
must ensure that an authenticated log (CFLog) containing a
representation of the control flow path executed during the
operation is built. After execution completes, the RoT com-
putes an authenticated integrity measurement (e.g., using
a Message Authentication Code (MAC) or signature) over
the received challenge, CFLog, and the executed binary to
produce a response token (CFReport). Finally, Prv transmits
CFReport to Vrf along with CFLog. Given the need to
securely store the secret used to authenticate CFReport even
when Prv is potentially compromised, RoT implementations
typically involve some form of secure hardware support.

Upon receiving CFReport, Vrf can use this evidence to
determine if Prv executed the expected software correctly
through a valid control flow path. Further, when CFReport

shows an invalid path, Vrf can analyze the anomalous
evidence to determine its cause and potentially remediate
it.



Existing CFA techniques (see Section 3) use either (1)
binary instrumentation along with Trusted Execution Envi-
ronment (TEE) support; or (2) custom hardware modifica-
tions to generate CFLog by detecting and saving each branch
destination to a dedicated and protected memory region. For
techniques that use binary instrumentation, a pre-processing
phase modifies the binary so that branch instructions are
prepended with additional calls to a TEE-protected trusted
code. Once called, the trusted code appends to CFLog the
current branch destination. In hardware-based techniques,
custom hardware interfaces with the CPU to detect branches
and record their destinations in protected memory.

2.3.3. CFI/CFA Coverage. We define the coverage of
CFI/CFA proposals in terms of granularity and sensitivity.

Granularity: The granularity of CFI/CFA mechanisms
refers to the detail in which a particular control flow transfer
is monitored/checked. In this work, we categorize the granu-
larity of a specific technique as either coarse-grained or fine-
grained. Since CFI and CFA have different security goals
(local detection/prevention vs. providing runtime evidence
to a remote party), their granularity pertains to different
aspects.

A coarse-grained approach refers to broadly applied
checks that are independent of specific control flow transfers
within the code. In the case of CFI, this involves techniques
applied based on instruction type and agnostic to individual
transfers. For instance, the following CFI policies can be
classified as coarse-grained: enforcing landing pads for
calls/returns, checking function type/parameter for indirect
calls, and restricting indirect control flow targets within the
bounds of a specific sandbox/address space. Since these
policies are generally applied to all control flow transfers
within a specific scope and do not account for the specific
details of each transfer, they are considered coarse-grained.
In CFA, a scheme is deemed coarse-grained if it does
not record all control flow transfers within the attested
application into CFLog.

A fine-grained technique refers to mechanisms that ap-
ply a specific check or action for each control flow instruc-
tion. In the case of CFI, this entails schemes that verify each
indirect target against a unique set of valid locations rather
than applying a broader rule based on the instruction type.
For instance, enforcement through techniques like shadow
stacks, jump-tables, or definition sets determined by data-
flow analysis are considered fine-grained solutions. A CFA
scheme is classified as fine-grained if it records all control
flow transfers within the attested application.

Sensitivity: Although closely related to granularity, the
sensitivity of a certain technique describes a different char-
acteristic. It refers to the extent to which execution context
is considered for determining the set of valid targets. In
this work, we categorize schemes as insensitive, context-
sensitive, or path-sensitive.

Techniques have insensitive enforcement if they do not
consider the calling context or current execution path when
defining the set of valid targets for a particular control
flow transfer. As such, the majority of coarse-grained CFI

mechanisms are regarded insensitive because they employ
generic rules, e.g., based on the instruction type, ignoring
the current execution path or the calling context.

Context-sensitive approaches consider the calling context
to determine the set of valid targets. Examples include
target bounds being within a particular function/sandbox.
Additionally, when a function is called at multiple locations
within a second function, a context-sensitive approach might
determine returns to any call site within the second function
as valid. For forward edges, a context-sensitive approach
allows any valid definition that can reach the function con-
taining the forward edge.

Path-sensitive approaches determine the set of valid tar-
gets by considering both the calling context and the current
executing path. For instance, shadow stacks are regarded as
path-sensitive enforcement mechanisms for return addresses
because they limit a return to a single call site. Furthermore,
schemes that employ data flow analysis, such as reaching
definitions or points-to analysis, to determine the valid des-
tinations of indirect branches are considered path-sensitive.

In CFI, sensitivity affects the local decision on whether a
transfer constitutes a violation, whereas in CFA, sensitivity
reflects the type of analysis/detection that can be performed
by Vrf based on the received evidence.

2.3.4. CFI/CFA Threat Models & Assumptions. The se-
curity of most CFI techniques depends on the presence of
added instrumentation used to enforce CFI checks. In many
cases, this is attained via W⊕X permissions for memory
accesses, as shown in Figure 3. While sensible for user-space
code, privileged code can typically disable W⊕X enforce-
ment. Therefore, most CFI approaches that target privileged
code (e.g., Kernel) rule out code injection/modification from
their threat model.

CFA mechanisms require an RoT to implement their
attestation functionality, including the acquisition and sign-
ing of relevant evidence. The RoT function can also attest
the executed binary (and any instrumentation therein) as
performed by regular RA. This removes the need for W⊕X
enforcement, as long as code is attested in a temporally
consistent manner, i.e., code remains the same in the interim
between its measurement and execution. This also makes
CFA useful to verify privileged code and code that runs on
single-privilege Micro Controller Units (MCUs).

Similar to other TEE-based security services, TEE-based
CFA (e.g., [33], [38], [43]) assumes that any application
outside the (hardware-protected) trusted realm of the TEE
(e.g., outside the Secure World in TrustZone) can be mod-
ified/compromised whereas the RoT implementation within
the Secure World is trusted. This is typically supported by
a secure boot of the trusted code and implicitly assumes
a minimal and vulnerability-free RoT implementation, as
vulnerabilities in the RoT can lead to full system compro-
mise [87]. Some CFA methods eliminate the need to trust
a software TCB within the TEE by implementing the CFA
RoT entirely in hardware [35]–[37].

Generally, both CFI and CFA consider the underlying
hardware to be trusted, focusing on software-based exploits.



3. Design Space

Figure 5 illustrates the distinguishing factors in CFI
and CFA, highlighting the consequences of design choices
on their effectiveness and susceptibility to attack vectors.
Accordingly, Table 1 presents a classification of recent work
in CFI and CFA, capturing design principles of each mech-
anism and assessing their trade-offs. Aside from aspects
related to security goals (defined in Section 2.3), the rest
of this section elaborates on design factors. Afterward, Sec-
tion 4 discusses the consequences of these design choices.

3.1. Different Objectives

CFI mechanisms primarily focus on locally detecting
control flow violations during the dispatching stage to
prevent execution of exploited code from continuing, as
depicted in 4 in Figure 3. In this context, “prevent” is
not to be confused with the goal of memory safety defenses
as mechanisms that aim to remove vulnerabilities (see Sec-
tion 1.3). In other words, CFI does not remove root-cause
vulnerabilities. Instead, it impedes certain attack stages,
increasing adversaries’ difficulty in achieving arbitrary code
execution.

Conversely, CFA is concerned with providing authentic
execution evidence that can be verified and inspected
remotely. In this case, attack detection occurs at a relatively
late stage but provides essential insights into attack behavior
that can be used to respond to attacks that have evaded
prevention measures. This also includes logical bugs (i.e.,
those not caused by a memory vulnerability) in a program’s
control flow that CFI would not treat as an exception. In
contrast, CFI does not aim to inform or convince a remote
party of execution integrity, handling exceptions and faults
locally.

When incorporated atop CFA, runtime auditing [41],
[42] aims to reliably deliver evidence to Vrf, even when a
compromised Prv attempts not to follow the CFA protocol
(see Section 5), refusing to send reports to Vrf in an attempt
to hide the exploit behavior.

3.2. Action Mechanisms

Action mechanisms fall into (i) enforcement, (ii)
monitoring techniques, or (iii) hybrid (i.e. a combina-
tion thereof) and can be hardware-assisted or imple-
mented in software. Early CFI designs relied heavily on
enforcement through software-based instrumentation (SWI)
using generic instructions, so-called Inline Reference Mon-
itors (IRMs) [18], [85], [88]–[97]. More recent proposals
leverage hardware extensions for specialized CFI instruc-
tions as IRMs [20]–[22], [25]–[27], [98]–[100].

A significant limitation in the above-mentioned ap-
proaches is the lack of context sensitivity, with transfers
checked individually, making these CFI techniques bypass-
able, as demonstrated in several attacks [30], [101]–[105].
This has fueled the development of context-sensitive CFI
[84], [106]–[112]. Some proposals in this area use advanced
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points-to-analysis to incorporate path/flow sensitivity to en-
force policies effectively. They also leverage commodity
hardware features to safeguard the integrity of critical vari-
ables that represent the main reference of execution history
in such policies [109], [110].

Hybrid CFI approaches implement Hardware Reference
Monitors (HRMs) using hardware features to locally save
sequences of control flow transfers for asynchronous verifi-
cation by a separate trusted software module. For instance,
PathArmor [106] leverages the Intel Branch Record (LBR)
registers to enable implicit monitoring of execution paths,
whereas PittyPAT [107] and µCFI [84] mainly depend on
the Intel Processor Tracing (PT) technology [113] to ex-
plicitly monitor and verify the execution integrity at runtime.
SHERLOC [114] uses ARM Micro Trace Buffer (MTB) and
TrustZone for asynchronous detection of CFI violations.

CFA monitors the execution flow, recording transfers
to be reported in some form to a Vrf. C-FLAT [33] was
the first CFA and used software instrumentation to insert
IRMs, which redirect each control flow transfer to a se-
cure software routine housed within TrustZone. This rou-
tine extends branch destinations into a hash-chain before
resuming the attested execution (and performing the branch).
TinyCFA [34] shows an instrumentation-based approach to
achieve CFA atop a Proof of Execution (PoX) architecture,
called APEX [115]. Additionally, the work of Papamartzi-
vanos et al. [116] utilizes Intel PT technology [113] for gen-
erating the runtime traces. LO-FAT [35] and ATRIUM [36]
eliminate instrumentation requirements from C-FLAT by
implementing custom hardware modules to detect control
flow transfers and extend the hash-chain.



While these early approaches produce evidence that
minimizes storage/transmission costs (to the size of one
hash digest), they result in loss of information, requiring
Vrf to use the received hash digest to derive the exact
control flow path for inspection. The complexity of this
task grows exponentially, leading to the well-known path
explosion problem [117], [118].

To ease verification and inspection of CFA evidence,
more recent techniques [37], [38], [40], [41], [43], [119]
generate CFLog as a lossless trace containing all relevant
control flow evidence. For instance, OAT [38], ARI [40],
and TRACES [42] leverage TEEs to securely update and
store the runtime evidence. LiteHAX [37] and ACFA [41]
utilize custom hardware for recording a verbatim trace.

While CFA techniques are primarily focused on moni-
toring control flow events passively, recent techniques have
proposed hybrid action mechanisms that monitor the control
flow path while providing some enforcement capabilities.
For instance, ISC-FLAT [43] creates a TEE-protected dis-
patcher to ensure that external system interrupts cannot
stealthily modify the control flow of the application being
attested. CFA+ [120] leverages ARMv8.5-A’s landing pad
instructions [98] in combination with selective software
instrumentation to enforce a specific CFI policy and enable
lightweight monitoring of the execution state, which is
maintained in two reserved registers.

3.3. System Models & Execution Environments

CFA and CFI concepts can apply to both high-
end systems and low-end embedded devices. Addition-
ally, the requirements of execution environments within
the target platform for CFI/CFA can be distinguished as:
hardware-agnostic, extension-specific, and RoT-based.

CFI focuses mainly on the first two types of execution
environments, and it has primarily been applied in high-
end systems. Many earlier CFI approaches are hardware
agnostic and utilize SWI to monitor control flow events
and locally detect violations. These CFI mechanisms, e.g.,
LLVM-CFI [18] and Microsoft Control Flow Guard (MS-
CFG) [121], are easily portable and can cover a variety of
high-end targets regardless of the particular CPU type. As
they are hardware-agnostic and instrumentation-based, their
system models require the presence of a Memory Manage-
ment Unit (MMU) or an Operating System (OS) to main-
tain the integrity of the instrumentation. When applied to
bare-metal embedded systems that lack MMUs, a Memory
Protection Unit (MPU) is used for similar guarantees [111],
[122].

The portability of CFI in hardware-agnostic environ-
ments can come at the price of performance. Hence, sev-
eral CFI approaches use specific architectural (hardware)
extensions in their local environments. Some involve custom
hardware extensions specifically designed to support CFI,
while others are repurposed from their other goals and
integrated as building blocks into CFI. Examples of the
former include Intel CET [21] and ARM Pointer Authentica-
tion [20], along with the body of work built upon them [22],

[23], [25], [27], [99], [100]. Examples of the latter category
include CFI using Intel PT [84] and ARM Trace Macrocell
(TMC) [123]. As extension-specific execution environments
are available on both high-end and embedded platforms, CFI
proposals using them can also be applied to both classes of
target devices.

Most existing CFA approaches target embedded plat-
forms, including those with low-power single-core MCUs
(e.g., Atmel AVR ATMega, TI MSP430) with 1-16MHz
CPUs, 8-16 bit instruction set architectures (ISAs), used
to execute “bare-metal” software and commonly implement
IoT sensors/actuators and control systems. Additionally,
CFA has been proposed for 32-bit embedded platforms with
TEE support (e.g., ARM Cortex-M MCUs) that execute
real-time applications. As discussed in Section 2.3, CFA
necessitates RoT support to generate (and sign) remotely
verifiable evidence. RoTs in CFA for embedded devices
are implemented via TEEs [33], [38], [42], [43] or custom
hardware changes on Prv [34]–[37], [41], [124]. Current
CFA proposals aimed at user-space programs [119], [120],
[125] either trust the OS (the code integrity of which can be
verified using static RA as supported by commodity TPMs)
or rely on enclaved execution TEEs [126].

4. Effects & Consequences

This section discusses the effects and consequences of
design choices presented in Section 3.

4.1. Effectiveness

4.1.1. Coverage. In terms of coverage, CFI mechanisms
offer varying degrees of protection, ranging from protect-
ing all edges, i.e., all types of indirect control flow al-
tering instructions [14], [88]–[91], [107], [127], [128], to
partial coverage, targeting either forward-edges [18], [22],
[98], [100], [109], [110], [112], [121], [129] or backward-
edges [20], [21], [27], [99], [111], [122], [130], [131].
Forward-edge [9] schemes employ IRMs via SWI [18],
[121], [129], hardware-assisted monitoring [84], [107], land-
ing pads [22], [98], and pointer authentication [26], [92],
[100]. Backward edge [8] schemes utilize software- [122],
[132] or hardware-based [20], [21] shadow stacks, and
architecture-specific features, such as branch history tables
in the x86 processors [133], [134], static rewriting, e.g., to
form jump tables [111], or pointer authentication [27], [99].

Additionally, CFI designs can offer partial protection/-
coverage in specific scenarios. For example, some designs
concentrate on protecting C-like applications [129] while
leaving out relevant structures specific to C++, such as
vtables, and vice-versa [18]. Conversely, other designs focus
on statically linked applications [14], [88], [89], [92], [111],
overlooking dynamic linking and associated concerns, such
as protecting Procedure Linkage Tables (PLT) and Global
Offset Tables (GOT) [91], [135].

The majority of CFI mechanisms (regardless of their
coverage) are context insensitive [14], [18], [22], [88], [89],
[91], [92], [121], [128], [136]. This can introduce gaps that



are challenging to detect [69]. Moreover, it limits the ability
to detect non-control-data attacks [10].

CFA schemes can enhance coverage and expand (re-
mote) detection capabilities beyond traditional control-flow
hijacking attacks. As CFA evidence includes the executed
control flow path, it (in principle) informs Vrf of any out-of-
order execution, including DOP attacks which are oblivious
to most CFI. Some approaches [37], [38], [76] include data
inputs within CFA, augmenting produced evidence to also
make DDMs observable. It is important to note, however,
that CFA evidence is only truly useful if Vrf can effectively
analyze it. This last aspect has been, for the most part,
overlooked in the current literature. We revisit this point
in Section 5.2.

4.1.2. Compatibility. Compatibility is a fundamental aspect
to consider when evaluating the effectiveness of CFI and
CFA mechanisms and manifests in various forms.

Binary Support. Despite the abundance of CFI mech-
anisms, few operate directly on binary using static binary
analysis [88], [89], [95], [96] or specific hardware exten-
sions [94], [107], [128], [130], [136], [143], [144]. While
these have broader applicability, they suffer from false
positives [103] typically employing ad-hoc approaches to
recover CFGs or simply marking all address-taken functions
and call-site preceded instructions as legitimate targets for
indirect branches [17]. Conversely, CFI based on source
code [18], [26], [84], [91], [100], [106], [109], [110] con-
structs more accurate CFGs. Access to source code typi-
cally allows for advanced static analysis techniques (e.g.,
points-to analysis as seen in µCFI [84] and multi-layer
type analysis as seen in MLTA [86]), increasing coverage
and precision. However, source-level schemes do not apply
to commercial off-the-shelf (COTS) software, where only
binary images are available [15].

CFA designs typically do not require source code knowl-
edge to generate control flow evidence [33], whereas source
code knowledge may assist Vrf in analyzing received ev-
idence (see Section 5.2). Hardware-based CFA inherently
supports binaries [35]–[37], [41] by integrating with the
CPU core and detecting branch instructions at runtime.
CFA relying on SWI [33], [34], [38], [39], [42], [43] can
instrument control flow transfers in the binary without know-
ing the source. This is because required instrumentation is
used only to log destination addresses rather than determin-
ing/enforcing policies in place. Exceptions to this include
schemes mixing evidence generation with local integrity
checks, e.g., [120], [124].

Modular/Shared Object Support. A limitation of many
CFI mechanisms is the lack of support for external modules
or dynamic shared objects (DSO). These mechanisms often
rely on global information that may not always be available,
making it challenging to implement globally compatible
CFI. Abstractly speaking, support for external/shared mod-
ules involves (i) integrating multiple modules hardened by
CFI separately and (ii) integrating CFI-protected modules
with unprotected legacy code. Binary solutions such as
CCFIR [89] attempt to address these issues by allowing

more targets than necessary, striking a security-compatibility
compromise. Although approaches such as MCFI [91] and
RockJIT [137] tackle case (i) by independently instrument-
ing each module and generating new CFGs when modules
are linked, recent CFI solutions that offer stronger security
guarantees, exemplified by µCFI [84] and OS-CFI [109],
do not provide modular support. Even contemporary solu-
tions employing hardware features, e.g., PACStack [27] and
PACTight [100], struggle to address both issues (i) and (ii).

While not explicitly discussed in prior work, the lack
of modular support in CFA can be attributed to (i) most
CFA proposals being aimed at simple embedded systems
(as seen in Table 1) where applications are statically linked
within a single module; and (ii) DSO support would have
implications on Vrf evidence analysis, requiring careful
consideration.

Hardware Dependence. Hardware-specific features can
enhance CFI and CFA. However, they limit a scheme’s
compatibility to architectures that support them and intro-
duce challenges for legacy systems. For instance, CFI like
PittyPAT [107], GRIFFIN [128], µCFI [84], and PathAr-
mor [106] utilize Intel PT and LBR to obtain runtime infor-
mation and compute a smaller set of legitimate targets, strik-
ing a balance between accuracy and performance overhead.
Similarly, OS-CFI [109], and CFI-LB [110] leverage Intel
TSX (Transactional Synchronization Extensions) and MPX
(Memory Protection Extensions) to safeguard instrumented
code and metadata against malicious tampering. Approaches
such as HCFI [127] propose custom hardware modifications.

TEE-based CFA schemes demonstrate how instrumen-
tation can be used alongside RoT hardware support (e.g.,
ARM TrustZone [80], Intel MPK [145], or PoX architec-
ture [115]) to implement CFA. Early hardware-based CFA,
such as LO-FAT [35] and ATRIUM [36], add custom branch
monitors and hash engines to detect and accumulate control
flow transfers as a hash digest. LiteHAX [37] opts for
more expressive evidence, using dedicated hardware to log
and store all control flow transfers, aiming at easing Vrf
subsequent analysis. ACFA [41] uses custom hardware for
branch detection while eliminating the cost of hash en-
gines to make instrumentation-less CFA feasible in budget-
constrained micro-controllers. Instead, it incorporates com-
ponents of a static RA architecture (VRASED [72]) and
an active RoT (GAROTA [146]). The former is used to
authenticate CFA evidence, while the latter is leveraged to
ensure reliable delivery of evidence to Vrf (enabling auditing
guarantees).

Functionality. Recent evaluations of various CFI de-
fenses have highlighted compatibility issues that can com-
promise the intended functionality of the target applica-
tion [69], [147]. Notably, the implementation approach in
Lockdown [95] and OS-CFI [109] fails to correctly compile
certain applications, e.g., nginx. Moreover, CFI mechanisms
such as OS-CFI [109] and CFI-LB [110] have been found
to generate false positives. Additionally, the analysis mech-
anism of LLVM-CFI [18] is incompatible with at least one
application in the SPEC CPU2006 suite, as reported in [22].
CFI mechanisms that depend on reserving registers, e.g.,



TABLE 1. CATEGORIZATION OF CFI AND CFA SCHEMES, HIGHLIGHTING THEIR MAIN PROPERTIES AND REQUIREMENTS.

Device Type/Target Mechanism Scope Overheads

Year Scheme E
m

be
dd

ed
(b

ar
e-

m
et

al
)

E
m

be
dd

ed
(O

S)

H
ig

h-
en

d
(U

se
r-

sp
ac

e)

H
ig

h-
en

d
(K

er
ne

l)

Ty
pe

St
ra

te
gy

Sensitivity System Support D
at

a-
O

nl
y

R
O

P

JO
P

E
vi

de
nc

e
E

xp
re

ss
iv

en
es

s

R
un

tim
e

C
od

e
Si

ze

C
us

to
m

H
ar

dw
ar

e

N
et

w
or

k

Control Flow Integrity (CFI) Approaches
2013 bin-CFI [88] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗ # # - ● ● ✗ -
2013 CCFIR [89] ✗ ✗ ✓ ✗ Enforcement SWI+R/I ✗ OS/MMU ✗ # # - ● ● ✗ -
2014 LLVM CFI [18] ✗ ✗ ✓ ✓ Enforcement SWI ✗ OS/MMU ✗ ✗ G# - ● ● ✗ -
2014 KCoFI [90] ✗ ✗ ✗ ✓ Enforcement SWI ✗ MMU ✗ G# G# - ● ● ✗ -
2014 MCFI [91] ✗ ✗ ✓ ✗ Enforcement SWI CS OS/MMU ✗ G# G# - ● ● ✗ -
2014 RockJIT [137] ✗ ✗ ✓ ✗ Enforcement SWI CS OS/MMU ✗ G# G# - ● ● ✗ -
2015 CCFI [92] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗   - ● ● ✗ -
2015 HAFIX [130] ✓ ✗ ✗ ✗ Enforcement ISA Path C-HW ✗  ✗ - ● ● ● -
2015 CFCI [93] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗ # # - ● ● ✗ -
2015 O-CFI [94] ✗ ✗ ✓ ✗ Enforcement SWI+R/I ✗ OS/MMU+MPX ✗ G# G# - ● ● ✗ -
2015 πCFI [85] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗ G# G# - ● ● ✗ -
2015 PathArmor [106] ✗ ✗ ✓ ✗ Hybrid SWI+ISA Path OS/MMU+LBR ✗   - ● ● ✗ -
2015 Lockdown [95] ✗ ✗ ✓ ✗ Enforcement SWI+R/I ✗ OS/MMU ✗   - ● ● ✗ -
2016 TypeArmor [96] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗ ✗ G# - ● ● ✗ -
2016 FG-CFI [97] ✗ ✗ ✗ ✓ Enforcement SWI ✗ MMU ✗ G# G# - ● ● ✗ -
2016 HCFI [127] ✗ ✗ ✓ ✗ Enforcement ISA ✗ OS+C-HW ✗   - ● ● ● -
2017 PittyPAT [107] ✗ ✗ ✓ ✗ Hybrid ISA+HRM Path OS/MMU+PT ✗   - ● ● ✗ -
2017 GRIFFIN [128] ✗ ✗ ✓ ✗ Hybrid ISA+HRM ✗ OS/MMU+PT+TSX ✗   - ● ● ✗ -
2017 CFI-CaRE [136] ✓ ✗ ✗ ✗ Enforcement SWI+R/I ✗ TZ ✗  G# - ● ● ✗ -
2017 Intel CET [21] ✗ ✗ ✓ ✓ Enforcement ISA ✗ OS/MMU+CET ✗  # - ● ● ✗ -
2018 µCFI [84] ✗ ✗ ✓ ✗ Hybrid SWI+ISA ✗ OS/MMU+PT ✗   - ● ● ✗ -
2018 SCFP [108] ✓ ✗ ✗ ✗ Enforcement SWI+C-HW Path C-HW ✗  G# - ● ● ● -
2018 ARM BTI [98] ✓ ✓ ✓ ✓ Enforcement ISA ✗ BTI ✗ ✗ # - ● ● ✗ -
2018 PAC-RET [99] ✓ ✓ ✓ ✓ Enforcement ISA ✗ PA ✗  ✗ - ● ● ✗ -
2019 OS-CFI [109] ✗ ✗ ✓ ✗ Enforcement SWI+R/I Path OS/MMU+MPX+TSX ✗ ✗  - ● ● ✗ -
2019 CFI-LB [110] ✗ ✗ ✓ ✗ Enforcement SWI+R/I CS OS/MMU+TSX ✗ ✗  - ● ● ✗ -
2019 PARTS [25] ✗ ✗ ✓ ✗ Enforcement SWI+ISA ✗ OS/MMU+PA +   - ● ● ✗ -
2020 µRAI [111] ✓ ✗ ✗ ✗ Enforcement SWI+R/I Path MPU ✗  ✗ - ● ● ✗ -
2020 Silhouette [122] ✓ ✗ ✗ ✗ Enforcement SWI+R/I ✗ MPU ✗  ✗ - ● ● ✗ -
2021 VIP [112] ✗ ✗ ✓ ✗ Enforcement SWI+R/I Path OS/MMU+MPK + ✗  - ● ● ✗ -
2021 PACStack [27] ✗ ✗ ✓ ✗ Enforcement SWI+ISA ✗ OS/MMU+PA ✗  ✗ - ● ● ✗ -
2022 TyPro [129] ✗ ✗ ✓ ✗ Enforcement SWI ✗ OS/MMU ✗ ✗  - ● ● ✗ -
2022 PAL [26] ✗ ✗ ✗ ✓ Enforcement SWI+ISA ✗ PA+MMU ✗   - ● ● ✗ -
2022 PACTight [100] ✗ ✗ ✓ ✗ Enforcement SWI+ISA ✗ OS/MMU+PA ✗   - ● ● ✗ -
2023 FineIBT [22] ✗ ✗ ✓ ✓ Enforcement SWI+ISA ✗ CET+MMU ✗ ✗ G# - ● ● ✗ -
2023 SHERLOC [114] ✓ ✗ ✗ ✗ Hybrid ISA+HRM Path TZ+MTB+DWT ✗  G# - ● ● ✗ -
2023 TypeSqueezer [138] ✗ ✗ ✓ ✗ Enforcement SWI Path OS/MMU ✗ ✗  - ● ● ✗ -
2024 HEK-CFI [139] ✗ ✗ ✗ ✓ Enforcement ISA ✗ CET+MMU ✗  G# - ● ● ✗ -

Control Flow Attestation (CFA) Approaches
2016 C-FLAT [33] ✓ ✗ ✗ ✗ Monitoring SWI Vrf-based TZ ◻   △ ● ● ✗ ☆
2017 LO-FAT [35] ✓ ✗ ✗ ✗ Monitoring C-HW Vrf-based C-HW ◻   △ ✗ ✗ ● ☆
2017 ATRIUM [36] ✓ ✗ ✗ ✗ Monitoring C-HW Vrf-based C-HW ◻   △ ✗ ✗ ● ☆
2018 LiteHAX [37] ✓ ✗ ✗ ✗ Monitoring C-HW Vrf-based C-HW ⊞   ▲ ✗ ✗ ● ☀
2019 DIAT [140] ✓ ✓ ✗ ✗ Monitoring SWI Vrf-based TZ ◻   △ ● ● ✗ ☆
2019 ScaRR [119] ✗ ✗ ✓ ✗ Monitoring SWI Vrf-based OS/MMU ◻   ▲ ● ● ✗ ☀
2019 RIM [124] ✓ ✗ ✗ ✗ Monitoring C-HW Path C-HW ⊞   △ ✗ ✗ ? ☆
2020 OAT [38] ✓ ✓ ✗ ✗ Monitoring SWI Vrf-based TZ ⊞   ● ● ✗ ☆
2020 LAHEL [141] ✓ ✓ ✗ ✗ Monitoring C-HW Vrf-based C-HW ◻ G# G# ● ● debug HW ☆
2020 LAPE [142] ✓ ✗ ✗ ✗ Monitoring SWI+R/I Vrf-based MPU ◻ G# G# △ ● ● ✗ ☆
2021 Tiny-CFA [34] ✓ ✗ ✗ ✗ Monitoring SWI Vrf-based C-HW ◻   ▲ ● ● ✗ ☆
2021 DIALED [76] ✓ ✗ ✗ ✗ Monitoring SWI Vrf-based C-HW ⊞   ▲ ● ● ✗ ☆
2021 ReCFA [125] ✗ ✗ ✓ ✗ Monitoring SWI+R/I Vrf-based OS+MPK ◻   ▲ ● ● ✗ ☆
2022 GuaranTEE [126] ✗ ✗ ✓ ✗ Monitoring SWI Vrf-based Intel SGX ◻   △ ● ● ✗ ☆
2023 ACFA [41] ✓ ✗ ✗ ✗ Monitoring C-HW Vrf-based C-HW ◻   ▲ ✗ ✗ ● ☀
2023 ARI [40] ✓ ✓ ✗ ✗ Monitoring SWI Vrf-based TZ ◻ G# G# ● ● ✗ ☆
2023 BLAST [39] ✓ ✓ ✗ ✗ Monitoring SWI Vrf-based TZ ◻   ▲ ● ● ✗ ☆
2023 ISC-FLAT [43] ✓ ✗ ✗ ✗ Hybrid SWI Vrf-based TZ ◻   ▲ ● ● ✗ ☆
2024 TRACES [42] ✓ ✗ ✗ ✗ Monitoring SWI Vrf-based TZ ◻   ▲ ● ● ✗ ☀
2024 CFA+ [120] ✓ ✓ ✓ ✗ Hybrid SWI+ISA Vrf-based OS/MMU+TPM ◻   ▲ ● ● ✗ ☆
Legend: ✓ Has this feature, ✗ Lacks this feature, - Feature is not applicable, SWI: Software Instrumentation, HRM: Hardware Reference Monitor, R/I: Randomization or Isolation, ISA: Instruction Set

Architecture, MMU: Memory Management Unit, C-HW: Custom Hardware, OS: Operating System, CS: Context Sensitive, Path: Context- & path-sensitive MPX: Intel Memory Protection eXtensions LBR:
Intel Last Branch Record PT: Intel Processor Trace TSX: Intel Transactional Synchronization Extension TZ: ARM TrustZone, CET: Intel Control-Flow Enforcement Tech., BTI: ARM Branch Target
Identification, PA: ARM Pointer Authentication, MPU: Memory Protection Unit, MPK: Intel Memory Protection keys, MTB: ARM Macro Trace Buffer, DWT: ARM Data Warchpoint and Trace, +

Definition-to-use data corruption, ◻ Path deviation DOP, ⊞ Definition-to-use data corruption & path deviation DOP,  Fine-grained, G#Mixed granularity, # Coarse-grained, △ No path or hashed path,
Partial path, ▲ Full path (lossless), ☆ All evidence stored and transmitted at once, ☀ Evidence sliced and streamed, ✗ No overhead, ● <5% overhead, ● <20% overhead, ● Higher overhead, ? Feature

required but cost not reported, debug HW reliance on prototyping/debug features not meant for device deployment.

VIP [112], can corrupt functionality when targeting appli-
cations with inline assembly that utilize the same registers.

CFA mechanisms that instrument binaries may also en-
counter compilation failures due to instrumentation issues,



as observed in ReCFA with specific benchmarks [125]. As
CFA is a newer concept, fewer studies exist on analyzing
CFA instrumentation compatibility. At least in principle,
issues presented in CFI schemes could also apply to CFA,
depending on the instrumentation strategy used. (For in-
stance, similar to VIP-CFI, TinyCFA and TRACES also
employ reserved registers.)

4.1.3. Feasibility. CFI approaches are to a large extent fea-
sible, despite inherent uncertainties around the robustness of
policies due to granularity and context sensitivity (discussed
further in Section 4.2). As with any attestation mechanism,
CFA requires a secure RoT on Prv to maintain and au-
thenticate evidence, as discussed in Section 3.2. It also
requires communication with an external Vrf. Naturally,
custom hardware features (such as branch monitors) improve
feasibility and reduce the cost of CFA. Being a relatively
recent concept, we expect hardware features to support CFA
to take longer to reach off-the-shelf devices.

4.1.4. Performance & Scalability. When comparing the
scalability of CFI and CFA, it becomes evident that CFI
generally encounters fewer or no scalability challenges due
to their localized nature. Since the scope of CFI is confined
to local decisions based on control flow policies, scalability
issues revolve around code size and runtime of the individ-
ual applications being protected. A study dedicated to CFI
performance can be found in [15].

Performance and scalability in CFA depend on the
monitoring strategy. Techniques that utilize SWI incur run-
time and code-size increases due to logging [34], context
switching into secure environments [39], or both [33], [38],
[40], [42], [119], [140], [142]. Alternatively, hardware-based
CFA mechanisms trade the performance/scalability impact
of SWI for additional hardware costs. Early hardware-based
approaches impose expensive overheads due to large internal
buffers and hardware hash-engines [35], [36]. Alternative
techniques leverage minimal hardware [34], [37] or propose
hardware/software co-designs [41] to lower the hardware
cost. Regardless of their specificities, existing hardware-
based CFA mechanisms are tailored to embedded platforms,
leaving scalability in more complex computing platforms as
an open challenge.

Unlike CFI, CFA faces further performance challenges
in storing and transmitting runtime evidence. Schemes such
as ScaRR [119], ACFA [41], and TRACES [42], which
continuously report evidence to Vrf, may face challenges
when attempting to cover multiple active applications on
the same Prv. This may impact availability, particularly
when network communication is essential (e.g., cloud). In
other schemes, Prv may need to store a large CFLog if
attested operations are complex. The latter can limit CFA
applicability to small and self-contained operations [34],
[38]. Recent work has investigated dynamically configurable
and application-specific optimizations for CFA evidence in
MCUs [148]. Nevertheless, additional research is required
to realize CFA (and related optimizations) in higher-end
systems.

4.2. Attack Vectors

In this section, we explore how gaps or design choices
(typically aimed at trading off performance for security) in
CFI and CFA can lead to attack vectors.

4.2.1. Pitfalls. Attacks can exploit various well-known pit-
falls or limitations, including, but not limited to:

Granularity: many past attacks have exposed the inef-
fectiveness of coarse-grained CFI defenses for both forward
and backward edges [101]–[103].

Implementation issues: the implementation of defenses
may deviate from their design specifications, leading to a
larger number of allowed branch targets than necessary. For
example, [69] highlighted implementation mistakes in mul-
tiple CFI defenses, including MCFI [91] and PARTS [25].

Imprecise consideration of language semantics: At-
tacks such as COOP [149] have affected T-VIP [150] and
VTint [151] due to inadequate incorporation of language-
specific semantics.

Hardware design limitations: Certain attacks have
specifically targeted the hardware design of CFI mecha-
nisms. For instance, the attack on HAFIX [130] highlighted
vulnerabilities stemming from hardware limitations [152].

Exploitation of Assumptions: defenses always rely on
assumptions within their threat models. Thus, attacks can
exploit and falsify these trust assumptions to bypass the de-
fense mechanisms. For instance, a widespread CFI assump-
tion is W⊕X. The POP attack [70] serves as an example
where this assumption was violated to bypass FineIBT [22]
defense on the Linux kernel v6.2.8.

Corner Cases: Certain attacks exploit exceptional cases.
For instance, the Control Jujutsu attack [153] highlighted
the limitations of fine-grained CFI defenses with activated
shadow stacks in complex code bases like Apache and
nginx. Due to coding practices in these code bases, context-
insensitive analysis, regardless of its intended robustness,
creates over-approximated CFGs that render CFI ineffective.
Another example is CHOP [154], which further undermines
robust backward edge protection mechanisms, including
hardware-based shadow stack implementations [21]. It lever-
ages a specific corner case that enables manipulation of the
stack unwinding path during exception handling to launch
ROP-like attacks, using the unwinder as a confused deputy.

CFA has not yet been extensively evaluated: coarser-
grained CFA [40] (or those based on attesting Prv adherence
to locally enforced CFI policies [124]) may be subject to
the same attack vectors as coarse-grained/context-insensitive
CFI, where certain attacks would not appear in the CFA
evidence. Yet, CFA that monitors all indirect branches can
withstand language semantic issues, enabling detection of
attacks such as COOP [149]. Additionally, CFA can also
provide evidence of logic implementation bugs that lead to
unintended paths, in addition to attacks rooted in memory
safety vulnerabilities. Naturally, the expressiveness of CFA
evidence (i.e., whether it gives Vrf full path evidence or a
subset) comes at the price of its (lossless) storage and trans-
mission. Unsurprisingly, implementation deviations (from



intended specifications) and falsifiable assumptions would
equally affect CFA and CFI.

4.2.2. Control Flow Bending (CFB). CFB attacks [19]
generalize non-control data attacks targeting CFI schemes
relying on statically generated CFGs. While many CFI
attacks target weaker or sub-optimal implementations [101]–
[103], CFB focuses on bypassing the most restrictive (or
optimal) static CFI policies. CFB creates malicious (Turing-
complete) paths that exist on the most strict CFG for a given
program by exploiting specific functions, called dispatchers,
which have the capability to modify their own return ad-
dresses. In other words, CFB can arbitrarily modify (bend)
a program’s behavior/path while staying within the confines
of the imposed security policy.

This highlights that even fine-grained CFI can be by-
passed if dynamic backward protection is not implemented
(e.g., via a secure shadow stack). To mitigate CFB, cer-
tain CFI proposals incorporate dynamic analysis [85] or
leverage hardware features that provide runtime information
on execution status [84]. Additionally, context-sensitive CFI
schemes have the potential to reduce the impact of CFB by
maintaining an execution history and validating the execu-
tion of return instructions accordingly [109], [110].

Most CFA approaches log all dynamically defined
branch targets within their execution scope. Thus, CFB
path deviations appear in generated evidence, making CFB
attacks apparent to Vrf. That said, (similar to cases discussed
above) the effectiveness Vrf in detecting CFB based on CFA
evidence remains to be concretely evaluated.

4.2.3. Race Conditions. Many CFI methods overlook
thread safety in multi-threaded applications. This can leave
them vulnerable to Time-Of-Check-to-Time-Of-Use (TOC-
TOU) attacks. Software-based approaches such as LLVM-
CFI [18] face challenges in ensuring thread safety, especially
in the presence of blind compiler optimizations that can
inadvertently expose sensitive variables used for security
checks. This can create race conditions that enable TOC-
TOU attacks [155].

Additionally, WarpAttack [156] revealed that compiler
optimizations could introduce double-fetch vulnerabilities,
resulting in concurrency issues and TOCTOU, even with
a strict static CFI policy that includes both forward and
backward-edge protections. WarpAttack bypassed several
CFI defenses, including LLVM-CFI [18], Lockdown [95],
and MS-CFG [121]. To mitigate race conditions, contempo-
rary CFI mechanisms rely on hardware support. For exam-
ple, OS-CFI [109] and CFI-LB [110] utilize Intel TSX to
safeguard intermediate values.

In CFA (and more broadly RA), resistance against TOC-
TOU attacks and race conditions often refers to achieving
temporal consistency between when the executable binary
is measured and when it is executed [34], [157]–[159].
Aside from modifications to code, the integrity of CFA
evidence can be compromised by external interrupts that
may stealthily modify the control flow path or the execution
state, as shown and mitigated by ISC-FLAT [43].

4.2.4. Side channels. The emergence of microarchitectural
attacks can affect CFI and CFA. While these defenses focus
on memory corruption attacks, certain variants of Spec-
tre [160] can affect them. For instance, Spectre v1 exploits
misspeculation following a bounds-check prior to an array
access, while Spectre v2 exploits misprediction of the target
of an indirect call or jump. Both utilize a Flush+Reload
channel [161] to leak data. Research has demonstrated that
Spectre v1-like attacks can bypass software-based CFI de-
fenses, such as LLVM-CFI [18], even in the presence of
all default mitigations [162]. While specialized mitigations,
such as SPECCFI [163] and MicroCFI [164], were proposed,
Spectre v2 remains severe and yet to be fully mitigated.

Although contemporary CFI defenses, such as Intel
CET [21], consider a post-Spectre threat model and are
designed with built-in protection against Spectre v2 [165],
recent attacks, such as InSpectre Gadget [166], have uncov-
ered new types of exploitable gadgets that can successfully
mount Spectre v2 attacks, even if the CET’s Indirect Branch
Tracking (IBT) feature or its recent fine-grained counter-
part, FineIBT [22], are active. PACMAN [30] stands out
as another recent attack that exploits speculative execution
along with memory corruption to bypass ARM Pointer
Authentication on Apple M1 SoCs.

Similar to CFI, CFA leveraging architectural components
vulnerable to side channels could be equally vulnerable. On
the other hand, several secret dependency-related time side
channels [167] (that exploit software implementation bugs,
rather than micro-architectural bugs) depend on differences
in the target program’s control flow path, opening opportu-
nities for exploit identification based on CFLog analysis. To
our knowledge, the latter remains unexplored in prior work.

5. Takeaways and Paths Forward

We conclude this paper synthesizing insights from dis-
cussions presented in Section 3, Section 4, and Table 1.
Based on these insights, we revisit questions [Q1-Q4] from
Section 1.

5.1. Takeways

Considering question [Q1] posed in Section 1, this sys-
tematization presents several differences between CFI and
CFA. The effectiveness of CFI mechanisms is intrinsically
tied to the comprehensiveness and accuracy of a (statically-
defined or dynamic) policy enforced locally. Most CFA tech-
niques are policy-agnostic, passively monitoring execution
to generate authenticated control flow reports. Contrary to
CFI, CFA concerns convincing a remote party of trustworthy
execution behavior, serving as a runtime analog to static
attestation methods that prove the integrity of booted/loaded
code. Thus, CFA reports are transmitted to a remote Vrf for
analysis. These observations lead us to Takeaway 1.

Regarding [Q2], we first examine CFA/CFI assumptions.
Many CFI schemes assume the ability to apply W⊕X on
memory to preserve the integrity of IRMs and avoid code
injection. In Table 1, this is apparent from user-space CFI



Takeaway 1: CFI and CFA have different goals

CFI focuses on local detection of control-flow vio-
lations, whereas CFA provides remote evidence of
execution behavior irrespective of underlying policy
enforcement.

schemes frequently relying on OS/MMU system support to
enforce the W⊕X policy. While CFA mechanisms need not
impose W⊕X, they must rely on an attestation RoT in Prv
to attest that reported runtime evidence is authentic (this in-
cludes code integrity and instrumentation, when applicable).
Furthermore, unlike CFI, CFA requires network connectivity
between Vrf and Prv. Despite these differences, we also
observe that state-of-the-art techniques for CFI and CFA
intersect in their mechanisms for monitoring control flow
events. For instance, many schemes utilize IRMs via SWI as
a mechanism while relying on hardware (whether commod-
ity or custom) to protect or support their instrumentation,
as shown in Table 1. Table 1 also shows that both CFI and
CFA can optimize SWI using specific ISA extensions. This
is summarized in Takeaway 2.

Takeaway 2: Design intersections & differences

Although CFI and CFA schemes share many com-
monalities in their strategies (as apparent in the
Mechanism column of Table 1), they also have
distinct requirements for their system models, e.g.,
as seen in the System Support and Network
Overhead columns of Table 1.

A common misconception/over-simplification that re-
lates to [Q3] is that CFA’s entire purpose is to enable CFI
checks to be outsourced to a resource-rich Vrf, avoiding
CFI costs on Prv. As extensively discussed in this system-
atization, CFA goals go beyond outsourcing CFI checks.
As evidence of that, recent CFA methods have evolved
to generate expressive (often lossless) control flow path
evidence, as opposed to proving adherence to a locally
enforced CFI policy (see Evidence Expressiveness
column, in Table 1). This is subsumed by Takeaway 3.

Regarding [Q4], given their distinct security goals, the
coexistence of CFI and CFA on the same platform could
be possible if the performance overhead is acceptable in the
target domain. We believe the exploration of approaches that
combine the strengths of CFI and CFA to be an intriguing
avenue for further research. A potential hybrid design might
include CFI building blocks that can be elegantly incorpo-
rated into CFA reports. Considering that many state-of-the-
art CFI offers fine-grained local ROP detection with low
overheads (as seen in Scope and Overheads columns in
Table 1), a hybrid approach might implement CFI techniques
for local ROP detection while utilizing CFA techniques for

Takeaway 3: CFA goes beyond outsourced CFI

While CFI is clearly the best choice for local detec-
tion of runtime attacks, CFA enables remote (and
offline) control flow path analysis, giving remote
visibility to complex path deviations (e.g., Control
Flow Bending) that would often be oblivious to most
CFI – see Scope column in Table 1. CFA evi-
dence also makes logic control path bugs (other than
memory corruption) observable. Finally, it facilitates
auditing and root cause analysis if the evidence is
reliably delivered to Vrf. On the other hand, remote
observability in CFA comes at the cost of support-
ing communication and securely implementing an
attestation RoT.

generating expressive evidence of path deviations due to
JOP, and/or logic control bugs. Yet, CFI/CFA integration is
non-trivial, as differences in designs and system assumptions
should be considered and can contribute to overheads. As a
first step in this direction, CFA+ [120] recently proposed a
mechanism that combines CFI and CFA to locally enforce
specific targets for certain control flow transfers, relying
on ARMv8.5-A landing pad instructions [98] while lever-
aging minimal instrumentation to record path information
in reserved registers. These observations are summarized in
Takeaway 4.

Takeaway 4: Coexistence merits investigation

Given the trade-offs between CFI and CFA, a hybrid
approach could offer both local responses to simpler
runtime attacks and remote visibility to complex
attacks and their root causes. On the other hand,
overheads of both approaches on the same platform
could challenge practical adoption.

5.2. Paths Foward

Demand for Stronger Threat Models. Currently con-
sidered threat models (in both CFI and CFA) can be limited
in scope or may not adequately address the challenges posed
by sophisticated adversaries (e.g., those capable of launching
side-channel attacks). Next-generation mechanisms could
consider stronger threat models to encompass new attack
vectors that can lead to control-flow violations.

CFA Support for Complex Software. The current
landscape of CFA mechanisms primarily focuses on ad-
dressing the needs of simple, specialized, bare-metal em-
bedded software (see column Device Type/Target in
Table 1). This limited scope poses challenges when it comes
to applying these mechanisms to complex software scenarios
with wider attack surfaces. To overcome this limitation, it
is crucial to develop CFA mechanisms specifically tailored
for complex software.



CFA Evidence Verification & Practicality. The ma-
jority of CFA literature focuses on Prv, assuming a Vrf
can interpret received evidence to detect attacks and identify
root causes as long as the evidence is sufficiently expressive.
Alas, there is a significant lack of concrete Vrf instances to
substantiate postulated evidence analysis capabilities. Most
of the CFA literature either leaves Vrf implementation as
future work or implements simple remote checks based
on received evidence, e.g., adherence to a CFG or em-
ulated shadow stack (both of these could also be done
locally by several CFI methods and still face the complex
challenge of validating non-deterministic forward-edges).
Only two studies have explored alternative approaches to
simple remote checks. ZEKRA [168] suggests generating a
zero-knowledge proof of CFG adherence for an untrusted
Vrf, while RAGE [169] proposes training a Graph Neural
Network (GNN) on previous runtime evidence for path
verification. Yet, thus far, no prior work has concretely
demonstrated CFA’s postulated benefits in uncovering com-
plex attacks (and their root causes) based on remotely
analyzed evidence. Additionally, striking a balance between
evidence expressiveness and overhead poses a challenge in
achieving full-fledged CFA. Hashed paths compromise de-
tailed runtime evidence in exchange for reduced storage and
transmission costs. However, lossless path representations
(and associated transmission to Vrf) remain costly. As the
complexity of the applications increases, the importance of
expressiveness/cost trade-offs becomes more pronounced.
Within this realm, promising avenues for future work in-
clude the development of mechanisms to reduce evidence
storage and transmission costs while maintaining relevance
and expressiveness. In this direction, recent work in Spec-
CFA [148] proposes architectural support for Vrf-defined
application-specific optimizations based on likely control
flow sub-paths, enabling reduced storage/transmission costs
without compromising evidence expressiveness.

CFI in Real-Time Systems and Other Niche. Most CFI
proposals in Table 1 are not well-suited for real-time systems
where strict timing requirements and execution integrity
must be simultaneously maintained. Several recent CFI pro-
posals focus on this gap [170]–[174]. InsectACIDE [170]
uses architectural support (ARM TrustZone and MTB) to
record control flow events without adding intra-task delays.
During idle periods in between the execution of tasks,
InsectACIDE uses the recorded information to perform se-
curity checks and locally detect control flow violations.
FastCFI [171] also uses ARM features for tracing con-
trol flow transfers but relies on Field Programmable Gate
Arrays (FPGA) to store and traverse a CFG according
to these transfers. ECFI [174] proposes a mechanism for
real-time Programmable Logic Controllers (PLCs) in which
indirect branches are instrumented, and a PLC’s OS can
schedule CFI checks. In ECFI, CFI checks are assigned
a lower priority so that PLC tasks maintain their Worst-
Case Execution Time (WCET). RECFISH [172] proposes
CFI for ARM MCUs executing both bare-metal software
or applications atop FreeRTOS. RECFISH utilizes SWI to
insert trampolines to functionality enforcing indirect branch

destinations according to function label sets or a shadow
stack. When applied to FreeRTOS, RECFISH also saves the
task’s state to the shadow stack to ensure that CFI-critical
data cannot be overwritten during a context switch.

Another challenge involves rethinking the conventional
approach of terminating an exploited application upon de-
tecting a CFI violation, especially in domains such as
autonomous systems. Abruptly terminating an application
can introduce system instability or disruptions, posing risks
to critical operations. Current proposals for CFI in real-
time systems generally focus on minimizing WCET while
supporting local detection rather than delving into post-
detection recovery strategies [170]–[172]. One alternative
approach in ECFI [174] makes killing the violating process
configurable via an optional flag and, by default, stores a
log file of the violation details. Alternative strategies could
be explored to recover from CFI violations and ensure
system safety without unintended consequences. A promis-
ing direction to address this challenge is to design CFI
schemes accommodating multi-variant execution that allows
the containment of exploited applications while enabling
the continuation of critical tasks. We note that devising
CFI that tackles both aforementioned challenges is non-
trivial and requires more careful consideration. This includes
accounting for factors such as portability, adaptability, and
scalability.
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Summary

This paper provides an SoK on CFI and CFA. The work
is motivated by the increasing threat of memory corruption
vulnerabilities and the wide scope of defenses that have
been proposed to mitigate them. The defenses fall under
two categories, CFI and CFA, but are riddled with various
goals, assumptions, and implementation weaknesses. This
paper disentangles the literature to provide a unified view
of the two approaches, their strengths and weaknesses, and
promising directions for future research.

Scientific Contributions

● Independent Confirmation of Important Results with Lim-
ited Prior Research
● Provides a Valuable Step Forward in Established Field

Reasons for Acceptance

1) The community is in need of a comparison and deep
understanding of the difference and gap of CFI and CFA.

2) The paper does a great job at comparing and contrasting
CFI and CFA and positioning them within the broader
scope of runtime defenses.

3) It also does a good job of highlighting promising avenues
for future work, including problem domains, high-level
abstractions, and low-level techniques.


