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Abstract. Microcontroller Units (MCUs), often remotely deployed to
perform safety-critical sensing and actuation within larger cyber-physical
systems, require low-cost security services due to their resource con-
straints. Among them, Control Flow Attestation (CFA) is a challenge-
response protocol wherein a remote Verifier (Vrf) issues a cryptographic
challenge (Chal) to a potentially compromised Prover MCU (Prv) to
demonstrate Prv has executed intended software without the presence of
control flow attacks. A root of trust within Prv is responsible for produc-
ing an authenticated log of the control flow path (C'FLog) taken during
the execution of an attested software operation and computing an au-
thenticated integrity token (e.g., a MAC or signature) over the current
snapshot of Prv’s program memory, C'Fro4, and Chal. By examining the
produced response, Vrf can determine if Prv’s code has been illegally
modified or fell victim to a control flow attack.

An important bottleneck in CFA is the storage and transmission of
CFrog-s. To address this, state-of-the-art optimization methods focus
on application-specific optimizations that speculate on likely control flow
sub-paths by replacing likely paths with reserved symbols of reduced size.
We argue that prior approaches overlook the data representation of con-
trol flow paths in their speculation strategy. Based on this observation,
we propose RESPEC-CFA, an architectural extension for CFA allow-
ing control flow path speculation based on (1) the locality of control
flow paths and (2) their Huffman encoding. RESPEC-CFA alone reduces
CFrog sizes by up to 90.1%. We also strive to design RESPEC-CFA such
that it can compose synergistically with state-of-the-art methods. As a
result, when combined with prior methods, RESPEC-CFA achieves up
t0 99.7% in log size reductions (without loss of information), significantly
outperforming previous approaches and advancing practical CFA.
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1 Introduction

Modern cyber-physical systems depend on Microcontroller Units (MCUs) for
sensing and actuation. However, given their low cost and low energy require-
ments, MCUs often lack security features comparable to general-purpose com-
puters. For example, they typically lack Memory Management Units (MMUs),
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inter-process isolation, or strong privilege level separation (see Section 2.1 for
more details on MCU architectures). Yet, MCUs often perform system-critical
tasks as a part of larger systems in which they are embedded, making them at-
tractive targets of attacks [25]. Therefore, reliable methods to assess the integrity
of remote MCUs are crucial.

Remote Attestation (RA) [42,41,57] is a two-party protocol that allows a
Verifier (Vrf) to measure the software state of a remote Prover MCU (Prv) in a
cost-effective manner. In RA, Vrf requests an authenticated report from Prv to
determine if the correct software is installed on Prv. While effective in detecting
malicious code modifications, RA is oblivious to attacks such as control flow
hijacking [54] that alter the program’s behavior without changing instructions.
Control Flow Integrity (CFT) [48,19,2] can be used to locally detect some of these
attacks on Prv. However, it provides no evidence of the attack behavior to Vrf.

Control Flow Attestation (CFA) [3,78,15,63,12,10,79,66,73,77] provides Vrf
the ability to ascertain both the runtime behavior and integrity of Prv. CFA ex-
tends RA to record a trace of the control flow path followed during the attested
program’s execution. This trace is created by logging the destinations of all con-
trol flow instructions (e.g., call, jump, or ret) executed. The resulting control
flow log (C'Fpeg) is authenticated alongside Prv’s installed code (per standard
RA) and sent to Vrf. With CFp,4, Vrf can determine whether the attested ex-
ecution had valid runtime behavior. For more details on CFI, CFA, as well as
their differences, we refer the reader to the systematization in [6].

As C'Fp,4 contains all branches taken, its storage and eventual transmission
are bottlenecks for CFA. Early CFA techniques [3,17,78] avoided this by com-
pressing C'F .4 into a single hash digest by computing a hash-chain of all control
flow destinations in CFp,,. However, as attested programs become more com-
plex, this approach leads to the well-known path explosion problem [52], making
verification by Vrf infeasible. Similarly, hash-based approaches do not offer in-
sight into malicious control flows taken. As a consequence, more recent CFA
methods [15,63,12,10,79,66,73,77] tend to log paths verbatim aside from simple
program-agnostic log optimizations (e.g., replacing simple loops with counters).

Program-agnostic optimizations do not capture application-specific charac-
teristics that can offer further C'F,,4 reductions. Therefore, recent work proposed
application-specific optimizations. SpecCFA [13] allows Vrf to speculate on and
configure Prv with a set of expected/likely control flow paths for the applica-
tion being attested. Then, at runtime, matching sub-paths in CFp,, are replaced
with reserved symbols of reduced size. As a result, SpecCFA significantly reduces
CF'o4 storage and transmission costs. SpecCFA’s optimization strategy depends
on the predictability and frequency of sub-paths in Prv’s execution. However,
SpecCFA does not account for application characteristics such as redundancy in
the data representation of C'Fr,4 or the memory locality of instructions.

Based on the observation above, our premise in the present work is that spec-
ulating on these other predictable characteristics could further reduce CFf,g.
Therefore, we propose REpresentation-aware SPECulative CFA (RESPEC-CFA),
a method (accompanied by corresponding architectural design and implementa-
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tion) to enable secure CFA speculation based on two new application-specific
characteristics:

— First, RESPEC-CFA allows Vrf to speculate on the locality of instructions
in an attested program. MCU applications are typically statically linked to
fixed program memory address ranges. Hence, code addresses often share
common prefixes. RESPEC-CFA allows Vrf to speculate on the length of
this prefix, grouping CFp,, entries by shared prefix. Each prefix is added
to CFLog with a special symbol to distinguish it from regular addresses.
For subsequent entries sharing the same prefix, only the suffix is logged.
When a new address has a different prefix, the new prefix is logged, and the
process repeats: only suffixes are logged until the next prefix mismatch. This
reduces the size of most C'Fp,, entries, removing redundant data without
loss of information.

— Second, RESPEC-CFA allows Vrf to speculate on CF,4’s data representa-
tion itself. For this, Vrf speculates on a Huffman encoding [22] (e.g., based
on previously received C'Fp,q4-s for the same code) and sends it to Prv along
with a CFA request. Upon receipt, RESPEC-CFA uses the Huffman encoding
to compress C'Fpog at runtime. This allows CFA to benefit from Huffman-
based compression without placing the burden of computing compression
algorithms on the resource-limited Prv.

CFA schemes either rely on custom hardware support [12,15,78,16] or Trusted
Execution Environments (TEEs) [3,63,73,10,79,66,39]. While RESPEC-CFA’s
concept applies to both categories, we implement RESPEC-CFA by modify-
ing SpecCFA’s TEE-based implementation [13]. This choice is motivated by
(1) SpecCFA’s open-source availability and (2) our goal of jointly implement-
ing SpecCFA and RESPEC-CFA to maximize the combined benefits of both
methods (their combined benefits are later confirmed by our experiments in
Section 4.2). Therefore, RESPEC-CFA’s prototype inherits SpecCFA’s charac-
teristic of targeting “off-the-shelf” MCUs with TEE support (specifically, ARM
Cortex-M with TrustZone). We evaluate RESPEC-CFA’s performance using
real-world MCU applications and find that it achieves large CF,4 reduction
with little runtime overhead. When combined with SpecCFA, RESPEC-CFA
achieves up to 99.7% reduction of C'F,, size for the evaluated applications. We
also make RESPEC-CFA’s prototype publicly available at [68].

2 Background & Related Work

2.1 MCU Architectures

MCUs are compact processors with CPU, memory, and I/O peripherals built
into one low-cost chip. They are typically embedded within larger systems and
used for sensing/actuation and real-time responses to stimuli. Additionally, they
offer low-power execution modes/idle states until asynchronous interrupt-based
processing is triggered. These characteristics make them useful for a variety of
settings, including those that require lengthy deployments or minimal energy
consumption.
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Fig.1: ARM Cortex-M TrustZone

The CPU within an MCU is typically single-core and executes software from
physical memory (at “bare-metal”), i.e., without an MMU to enable virtualization
and inter-process isolation. On the lower end of the scale (e.g., 8- or 16-bit CPUs
from Microchip AVR [37] or TT MSP430 [24]), they typically run 1-16 MHz clock
frequencies with 4-256 KB FLASH or FRAM memory for instructions and 1-
64KB SRAM memory for data. As it relates to security resources, many devices
are not equipped with extensive modules. In some cases, they might be equipped
with general-purpose Memory Protection Units (MPU), but are limited (e.g.,
support for three configurable regions only in program memory [20]), or other
security modules (e.g., Intellectual Property Encapsulation in TT MSP430 [23]).

Slightly more advanced MCUs include ARM Cortex-M MCUs (e.g., ARM
Cortex-M33 used for prototyping in this work [35]). The ARM Cortex-M class of
MCUs has 32-bit CPUs that typically range from 48-800 MHz clock frequencies,
between 16-2048 KB of FLASH memory, and 4-1400 KB SRAM memory [62,61].
They are also equipped with a Wake-up Interrupt Controller (WIC) that enables
entering idle states and low-power modes. The ARM Cortex-M class of MCUs
also has more security features, such as stronger MPUs (e.g., supporting up to 8-
16 configurable regions over all addressable memory) and the TrustZone security
extension (discussed further in Section 2.2). Yet, it lacks MMUs/virtual memory.

2.2 TrustZone for MCUs

ARMv8 Cortex-M MCUs are equipped with the TrustZone (i.e., TrustZone-
M) TEE [31]. As illustrated in Figure 1, TrustZone provides strong software
isolation by dividing hardware and software into two worlds: the “Non-Secure”
and “Secure” worlds.

These worlds are defined by two hardware controllers: the Secure Attribu-
tion Unit (SAU) and the Implementation-Defined Attribution Unit (IDAU) [34].
The region definitions enforced by the IDAU are fixed by the manufacturer, and
developers can configure the SAU via Secure World code to assign additional
memory to the Secure World as needed for a particular program. These config-
urations set by IDAU and SAU are enforced alongside any specific inner-world
access controls (e.g., setting Non-Secure World code as read and execute only).
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Additionally, ARM Cortex-M MCUs are typically equipped with a Nested Vec-
tor Interrupt Controller (NVIC) [30,29] that manages interrupts. The NVIC can
be controlled by Secure World code to assign interrupts to a particular world. It
can also be configured to ensure Non-Secure World interrupts do not interrupt
the Secure World and to set Secure World interrupts as higher priority.

TrustZone’s hardware-based isolation ensures that the Non-Secure World
cannot tamper with code and data belonging to the Secure World [28]. As such,
the Secure World can safely store security-critical functionality. TrustZone also
forces controlled invocation of the Secure World through dedicated entry points
called Non-Secure-Callables (NSCs), while enabling the Secure World to call
Non-Secure World code directly, as depicted in Figure 1.

Prior work has used TrustZone-M to enhance various aspects of embedded
system security, including but not limited to availability /performance [72,49] and
enabling security mechanisms of high-end CPUs (e.g., ALSR without MMUs [36],
and virtualization [51]). Similarly, several works have utilized TrustZone for de-
tecting control flow attacks, whether done locally through CFT [65,74,48] or
remotely through CFA [3,4,63,73,39,10]. For a more comprehensive discussion of
TrustZone see [50].

2.3 Remote Attestation

RA occurs between a Vrf and a potentially compromised Prv, allowing Vrf to
remotely assess Prv’s state. An RA instance is comprised of the following core
steps (depicted in Figure 2):
1. Vrf sends a cryptographic challenge C'hal, requesting Prv attest to its current
state.
2. Upon receiving Chal, Prv produces a token H by computing an authenti-
cated integrity check on its memory and Chal.
. Prv responds to Vrf by sending H.
4. Vrf compares H against its expected value to determine if Prv has been
compromised.

The authenticated integrity check in step 2 is implemented using a message
authentication code (MAC) or a digital signature. Hence, the secret key used to
produce H must be securely stored and used by a root of trust (RoT) on Prv in
full isolation from any compromised software on Prv. Optionally, the RoT in Prv
may also authenticate Vrf requests (in step 1). This mitigates denial-of-service

w
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attempts via bogus RA requests [8] and ensures that any other data within the
request (e.g., Vrf-issued commands in security services that build upon RA, such
as [12,10,45,44,14]) are genuine. In the context of this work, it also ensures that
Vrf-defined speculations are authentic.

RA is generally classified by its RoT implementation. Early schemes relied
solely on software to attest the Prv’s state. While applicable to commodity
MCUs, these software-only approaches require deterministic timing character-
istics such as a wired interface between Vrf and Prv for predictable network
latency [59,58,57]. These assumptions often make software-based approaches in-
applicable to remote settings [9].

Other models [26,53,41] use dedicated hardware and hardware-protected se-
crets to attest the Prv. Hardware-based approaches provide stronger security
guarantees, but the additional hardware cost can be prohibitive for resource-
constrained MCUs.

Hybrid RA [42,18,7] schemes balance hardware-assisted checks with the lower
cost of software. They typically implement the MAC/signature generation in
software, while using minimal hardware to securely store the secret key and
protect the execution of the RoT software.

Runtime Attestation expands upon classic RA to also convey evidence about
Prv execution properties. For example, proofs of execution [43,11,40] also prove
whether the attested function executed completely and whether claimed outputs
were indeed produced by such execution. Another type of runtime attestation,
and the focus of this work, is CFA [3,63,73,10,39,66,79,77,78,17,15,12,5]. CFA
extends RA to detect control flow attacks [64] that alter the execution of an
attested program without modifying its code.

2.4 Control Flow Attestation

CFA extends RA to generate a C'Fp,4 of the attested program’s execution by
recording the destination of branching instructions (e.g., jump, call, and ret
instructions) at runtime. To detect these branching instructions and securely
store C'Fp,q, existing CFA techniques rely on either (1) binary instrumenta-
tion with TEE-support [3,63,73,10,39,66,79,77,5,38] or (2) custom hardware ele-
ments [78,17,15,12]. When the attested execution completes, the resulting C'Fr,4
is signed/MAC-ed alongside Prv’s program memory content (as per RA) to pro-
duce H. Both H and CFT,,4 are sent to Vrf. With H, Vrf can validate Prv’s code
integrity and authenticate CFp 4. CFroq tells Vrf the executed path.

Early CFA schemes used a single hash to represent C'Fro [3,78,17], compress-
ing the execution trace into a small fixed-size value. This approach minimized
the storage and transmission overhead associated with CFA. Similarly, to verify
a given execution, Vrf simply needs to check if the received hash exists in the set
of all valid execution hashes. However, as binaries get more complex, trying to
enumerate all possible paths through the program becomes exponentially com-
plex, leading to the path explosion problem [52]. Further, hash-based approaches
can only detect if a given run is invalid. While malicious control flows change



3. RESPEC-CFA 7

the final hash result, the malicious path itself is not visible to Vrf. As a result,
Vrf cannot learn what triggered the attack nor how to correct it.

To address these limitations, recent CFA techniques log all control flow trans-
fers verbatim [15,63,10,12,66,79,77]. This eases verification; however, verbatim
logs can quickly outgrow the memory available on MCUs. Hence, prior work
introduced several simple C'Fp,, optimizations. Some approaches reduce the
size of C'F,, by limiting their scope to a subset of operations, such as indi-
rect branches [47,63,46] or a subset of the code [73]. Others reduce the size of
log entries themselves rather than the number of entries logged. LiteHAX [15]
records conditional branches with a single bit ('1’ if the branch was taken, ’0’
otherwise) while indirect branches are logged in full. OAT [63] uses a similar
bitstream representation to LiteHAX; however, OAT creates a hash-chain of
return addresses rather than logging them directly. Despite using hash-chains,
the added context of the rest of C'Fp,4 allows OAT to avoid the issues asso-
ciated with the early hash-based CFA approaches. Many CFA techniques also
replace repeated loop entries with a count denoting how many times the loop
executed [3,12,10,47,46,78,79].

Regardless of these optimizations, it is still possible for C'Ff,4 to outgrow
the available memory. In response, some CFA controls fix the size of CFpq4 in
memory and transmit the log in slices throughout the attested execution when
available memory is full [66,12,10]. On its own, this approach trades storage over-
head for increased transmission /runtime costs due to the additional intermediate
log transmissions. As such, CFA techniques often combine this approach with
other optimizations to reduce the number of CFp,4 slices that must be trans-
mitted.

Unsurprisingly, methods applied generically across different applications in-
herently miss application-specific characteristics that can be leveraged to further
reduce C'Fpo4. SpecCFA [13] shows the benefits of application-aware optimiza-
tion by enabling Vrf to speculate on high-likelihood control flow sub-paths. From
the binary or previously received CFpq4-s, Vrf can configure Prv with a set of fre-
quent/expected execution paths (e.g., frequent control loops, sensing operations,
etc.). At runtime, SpecCFA replaces these sub-paths in CFp,, with fixed-size
IDs, reducing CFpo4’s size. As Vrf knows the unique path-to-ID correspondence,
SpecCFA does not result in any loss of information in C'Frqg.

3 RESPEC-CFA

MCU applications are typically statically linked within a fixed address range,
and branch instructions often use relative offsets, making destination addresses
predictable. This results in program locality, i.e., common address prefixes can
be anticipated. Additionally, CFr,, data may exhibit skewed distributions due
to frequent patterns such as loops, sub-paths, or common address ranges.
Building on these observations, we present a method (and supporting de-
sign) that enables Vrf to speculate on address prefix sizes and Huffman encod-
ings tailored to the expected C'F,4 data. This improves C'F,,, compression at
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its construction time. We realize RESPEC-CFA as a TrustZone Secure World
module that extends CFA to support these two key optimizations. We also show
how RESPEC-CFA can be composed with the state-of-the-art and the benefits
of this composition.

Remark. Key to RESPEC-CFA’s practicality is not burdening resource-
constrained Prv with Huffman encoding computation. Instead, Vrf takes on this
burden by speculating on the ideal encoding based on previously received C'F,qq-S5.
This enables both: reduced C'Froq size and minimal runtime overhead on Prv.

3.1 System and Adversary Models

RESPEC-CFA targets single-core, bare-metal MCUs (recall Section 2.1) equipped
with TEEs (TrustZone-M, in our prototype). Attested applications (App-s) ex-
ecute in the Non-Secure World. The Secure World is used to house trusted
software modules, including RESPEC-CFA. TEE support is used for:
— Secure storage of attestation keys, which must be securely provisioned prior
to deployment;
— Isolation of the Secure World’s code and data from any App in the Non-

Secure World,

These characteristics can be achieved through standard ARM TrustZone-M v8
architectural support [31].

We consider an adversary (Adv) capable of fully compromising Prv’s Non-
Secure World. Adv can exploit memory vulnerabilities in Prv to perform control
flow hijacking or code-reuse attacks. In addition, Adv can manipulate Non-Secure
World interrupts and their interrupt service routines (ISRs). Adv cannot modify
any Secure World code and data due to the underlying TEE hardware protec-
tions. Adv cannot bypass Prv’s hardware-enforced controls. TEE-based CFA
relies on binary instrumentation to log control flow transfers. Thus, the code
of the application being attested must be immutable during its execution. This
is a standard requirement enforced by the underlying CFA schemes [6] and is
achieved by using TrustZone memory access controls. We consider physical at-
tacks (e.g., fault injection [69] or bus interposition [60]) and availability attacks
(e.g., denial of service [76]) orthogonal and out-of-scope for this work.

3.2 RESPEC-CFA High-Level Workflow

RESPEC-CFA’s workflow is shown in Figure 3. To configure RESPEC-CFA, Vrf
extends the CFA request to include a speculated Huffman encoding table and
speculated prefix length generated for the attested application App. Recall that
the CFA request (and the speculation strategy within) is authenticated. If no
speculation is specified in the request, RESPEC-CFA uses previously configured
speculations by default.

Upon receiving and authenticating the request, Prv saves the speculated Huff-
man table and prefix length to Secure World memory and begins App attested
execution in the Non-Secure World. Before deployment, App is instrumented
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Fig.3: RESPEC-CFA architecture. Addresses are represented in hexadecimal.

(as in prior work [3,4,39,10,66,63]) with NSC calls to the Secure World at each
branching instruction. When each of these instrumented calls executes (step @),
execution switches to the trusted CFA module in the Secure World to log the
branch destination. The destination address (dest) is passed to RESPEC-CFA’s
first submodule (step @). In this example, dest is the address 0x08246188.

RESPEC-CFA’s first submodule — Speculate prefix — uses the Vrf-configured
prefix byte length. In the example shown in Figure 3, prefizj., is 2 bytes. This
submodule compares the prefix of dest to the currently active prefix (prefizg: in
Figure 3). In this example, prefizg: is 0x0824 (in hexadecimal representation).
As dest’s prefix matches prefiz,e, it is removed from dest and the remaining
bytes are passed to RESPEC-CFA’s next submodule. In this example, the suffix
0x6188 is given as output in step @.

RESPEC-CFA’s second submodule — Speculated encoding — uses the Vrf-
configured Huffman encoding to compress the suffix. This submodule converts
the received data to its corresponding encoding(s). In this example, 0x6188
maps to the 2-bit Huffman encoding 0x3. Therefore, in step @, the submodule
outputs 0x3 as the final value to be appended to C'Fpr,4. After appending CFrg,
RESPEC-CFA resumes the execution of App in step @.

The following sections explain the stages of this workflow in more detail.

3.3 Prefix Size Speculation Details

RESPEC-CFA leverages the locality of MCU software to reduce CFpro4’s size.
Recall from Section 2.1 that low-end MCUs are typically equipped with limited-
sized program memory (e.g., 4 to 2048KB). Within that memory, the attested
application generally only makes up a small dedicated portion of it. Further, as
attested software is normally statically linked (using custom linker scripts) it has
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Fig.4: Example CF,4 reduction due to prefix size speculation

a fixed memory location [33]|. Therefore, Vrf has some prior knowledge of the
attested application’s memory bounds. Similarly, while some branch instructions
can target arbitrary addresses (e.g., indirect jumps), most branch instructions
either target a fixed memory address (e.g., direct jumps) or an offset (e.g., con-
ditional branches) [32]. Considering these characteristics, it is likely that branch
instructions within an attested application visit destination addresses that share
some locality (See Section 4 for more details). Thus, it is likely that subsequent
CFpoq4 entries share a common memory address prefix.

To leverage this, RESPEC-CFA enables Vrf to speculate on the best prefix
size to use based on knowledge of the attested application’s placement in program
memory or analysis of a prior CFp,4. Upon receiving the CFA request, RESPEC-
CFA saves the received prefix length (prefize, ) to Secure World memory. For the
first CFroq entry, RESPEC-CFA saves the entry’s prefix as the current active
prefix (prefizg.:). RESPEC-CFA then logs the prefix alongside a reserved symbol
to indicate to Vrf that this entry denotes a new prefix. After that, RESPEC-CFA
adds the entry’s suffix to the log. For each subsequent C'Fp,4 entry, RESPEC-
CFA compares the new entry’s prefix to prefiz,.;. If the prefixes match, only the
entry’s suffix is added to CFro4. Otherwise, the entry’s prefix becomes the new
prefizqe, the new prefix is added to C'Fp,4 alongside the reserved prefix symbol,
and the entry’s suffix is added to C'Fpg.

A demonstration of the resulting C'F,, due to prefix speculation is shown
in Figure 4. For the sake of simplicity, this example demonstrates a Control
Flow Graph (CFG) with seven nodes, each having a 16-bit start address. In
this example, Vrf has selected prefizy,, of 1 and configured the reserved prefix
symbol as 33. When execution starts in (a), no prefiz,.; has been determined yet.
The first address is used to select the current prefix,.;, which is €0. As such, the
reserved prefix symbol is logged with prefiz,.; and then the suffix is subsequently
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logged. Since addresses of the same prefix are visited in (c¢), only their suffixes
are logged. The prefix changes in consecutive control flow transitions in (d) and
(e), and thus in both cases, prefiz,.; is updated, the prefix symbol is logged with
the new prefix,.;, and the suffix is logged.

Note: If used jointly with other CFA optimizations that take place before
RESPEC-CFA (e.g., loop counters [3] or SpecCFA [13]), RESPEC-CFA’s pre-
fix sub-module might receive non-address inputs (i.e., already optimized entries
that do not directly correspond to destination addresses). Non-address inputs
are usually encoded with special symbols [12,13]. Therefore, RESPEC-CFA first
determines if the input is an address that needs prefix speculation or a spe-
cial symbol. In the latter, RESPEC-CFA logs the non-address without changing

prefitact.

3.4 Huffman Encoding Speculation

RESPEC-CFA also enables the optimization of C'Fr,4 using speculated Huffman
encodings [22]. Huffman encoding replaces fixed-length symbols with variable-
length codes. The length of these codes is determined by the frequency of symbols
in the data, where the more frequently a symbol occurs, the smaller its result-
ing code. We chose the Huffman algorithm given its optimal encoding proper-
ties [27,22]. Nonetheless, we note that any other lossless data encoding scheme
of Vrf’s choice can also be used. Vrf generates Huffman codes from prior CFp,q4-
s and sends the resulting encoding table to Prv as part of the CFA request.
Further, as new CFp,4-s become available, Vrf can use CFA requests to update
the encoding table as desired. RESPEC-CFA uses the received encoding table
to convert C'Fp.4 entries to their corresponding Huffman code at runtime. The
Huffman encoding table is stored in the Secure World on Prv and protected
from tampering by Adv. Note that Vrf does not need to send an encoding table
with every CFA request. If no new encoding table is received, RESPEC-CFA
continues to use the existing table to encode log entries.

An example demonstrating the effect of Huffman encoding speculation is
shown in Figure 5. The CFG of App is the same as the prior example in Figure 4,
but now Vrf is configured with a Huffman table denoting the mapping from word
to encoding, including the bit length of the encoding. In (a), the first address
€000 is encoded using the table into the bits 1011. This behavior repeats for
each control flow transition in (b)-(d). The final C'Fy,4 is represented with the
hex values at the end of (d), showing a compressed 3-byte CFpoq.

3.5 Security Analysis

We analyze RESPEC-CFA’s security against Adv with capabilities outlined in
Section 3.1. We argue that RESPEC-CFA’s additional optimization strategies
do not impact the security guarantees of the underlying CFA architecture.

To break CFA guarantees, Adv must remove evidence of malicious activity
from CFpeg. As such, Adv may try to modify CFp,, directly to remove mali-
cious control flow transfers. However, RESPEC-CFA stores CFp,4 in the Secure
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Fig. 5: Example C'F,,4 reduction due to Huffman encoding speculation

World, and thus, it is inaccessible to Adv. Adv could also attempt to abuse
RESPEC-CFA’s optimizations to hide malicious activity. Adv could try to cor-
rupt prefiz,.; to hide malicious memory prefixes or corrupt the Huffman encod-
ing table to encode malicious values as benign entries. However, both prefizge:
and the Huffman encoding table are stored in the Secure World and are again
inaccessible to Adv. Adv could also attempt to tamper with RESPEC-CFA’s im-
plementation, but both RESPEC-CFA’s and the underlying CFA architecture’s
code are stored in the Secure World and protected from Adv. Further, only the
instrumented NSC calls added to the attested application can modify CFpe,.
These instructions are protected by TrustZone’s hardware and cannot be abused
to log incorrect or overwrite existing C'Fr,4 entries.

Finally, Adv could attempt to impersonate Vrf and send Prv a malicious
prefizye, or Huffman encoding table to shorten/encode malicious entries to be-
nign values. However, this is prevented by ensuring that Prv’s RoT authenticates
all Vrf requests, as described in Section 3.2. Additionally, Adv could attempt to
replay messages from Vrf to maintain outdated/incorrect encodings or prefix
values. However, Vrf is authenticated based on monotonically increasing Chal,
making replay attacks infeasible.

Feature

Geiger

GPS

Mouse

Syringe

Temp.

Ultra.

Base Address

0x080401F8

0x080401F8

0x080401F8

0x080401F8

0x080401F8

0x080401F8

End Address

0x08040E4C

0x08041CEC

0x0804106C

0x08040D2C

0x08040D1C

0x08040C5C

Size (Bytes)

3160

6904

3704

2872

2856

2664

Table 1: Sizes of test applications in program memory
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4 TImplementation & Evaluation

We implement RESPEC-CFA on a NUCLEO-L552ZE-Q development board fea-
turing an STM32L552ZE MCU with ARM TrustZone-M support. This develop-
ment board is based on ARM-Cortex-M33, operating at 110 MHz. A UART-to-
USB interface with a baud rate of 38400 is used for communication with Vrf.
We develop RESPEC-CFA’s prototype by extending SpecCFA’s open-source de-
sign with support for the new optimization strategies. For evaluation, we use
several open-source MCU applications: an Ultrasonic Ranger [56], a Temper-
ature Sensor [55], a Syringe Pump [71], a GPS implementation [21], a Geiger
Counter [67], and a Mouse [70]. When installed in MCU memory, the selected
programs spanned between 2664 and 6904 bytes of program memory. As such,
all instructions shared the same 2-byte address prefix. For this reason, we config-
ure RESPEC-CFA with a 2-byte prefix length optimization in our tests. Table 1
summarizes each application’s location and code size. The speculated Huffman
encoding is determined by generating a Huffman encoding from prior CFpq4-s
of the evaluated applications.

We implement Vrf in Python and run it on an Ubuntu 20.04 machine. Vrf
functionality is divided into two scripts. The first script generates a Huffman
encoding table from prior CF.4-s for a specified alphabet. Our evaluation is
based on a 1-byte encoding Huffman alphabet. The second script decodes re-
ceived C'Fo4-s into their full form.

4.1 CFrog Reductions of RESPEC-CFA in Isolation

We evaluate RESPEC-CFA’s impact on CFp .4 size by comparing CFro4-s gener-
ated by a baseline CFA architecture TRACES [10] to C'Fr4-s generated by the
same CFA architecture equipped with RESPEC-CFA. We evaluate RESPEC-
CFA when Vrf has selected to speculate on prefixes alone, Huffman encoding
alone, and both. The resulting C'Fq sizes for each case are shown in Figure 6.

RESPEC-CFA’s prefix speculation has a theoretical upper bound based on
the size of the prefix compared to the address. Since RESPEC-CFA prototype
is built atop ARM Cortex M33 (a 32-bit — 4 byte — architecture), configuring
prefiziern, as 2 bytes results in a theoretical C'Fp,4 reduction upper bound of 50%.
In Figure 6, this is observed, as C'Fro4-s generated by RESPEC-CFA’s prefix
speculation submodule alone reduce the baseline C'Fp,4-s by 48.5-49.2%.

RESPEC-CFA’s Huffman encoding speculation reduces C'Fr,,4 by 50.8-71.5%.
Speculating on Huffman encoding is beneficial for programs that change prefixes
more frequently /have more varied addresses, as apparent with the Syringe Pump
application in Figure 6.

RESPEC-CFA with both strategies achieves the best optimizations, reducing
CFrog by 68.7-90.1%. Since prefixes are optimized away before being processed
by the Huffman encoding submodule, the Huffman table can be more fine-tuned
to speculate on the encoding of suffixes. Thus, the two submodules complement
each other and achieve higher C'F,, reductions together.
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Geiger GPS Mouse
Both Both Both
Huffman Huffman Huffman
Prefix Prefix Prefix
Baseline Baseline Baseline

0 500 1,000 0o 1 2 3 0 10 20

Bytes Kilobytes Kilobytes

Syringe Temperature Ultrasonic
Both Both Both
Huffman Huffman Huffman
Prefix Prefix Prefix
Baseline Baseline Baseline

0 5 10 15 0o 1 2 01 2 3 4

Kilobytes Kilobytes Kilobytes

Fig. 6: CFq4 size: RESPEC-CFA vs. baseline CFA [39]

4.2 Combined CFpog reductions of RESPEC-CFA + SpecCFA [13]

To demonstrate RESPEC-CFA’s effectiveness alongside existing CFA specula-
tion strategies, we combine it with SpecCFA and measure the resulting CFp,oq4
sizes. To our knowledge, SpecCFA path replacement strategy subsumes the opti-
mizations from prior work and outperforms all other CFA techniques, making it
an ideal candidate for integration and comparison. In this case, RESPEC-CFA
workflow (recall Section 3.2) takes place after SpecCFA replacement of sub-paths
with symbols of reduced size. We evaluate CF'r,4 sizes in the following specula-
tion strategy scenarios:
1. Program sub-path speculation (i.e., SpecCFA) alone;
2. Program sub-path and RESPEC-CFA’s prefix speculation;
3. Program sub-path and RESPEC-CFA’s Huffman encoding speculation; and
4. All speculation strategies combined (program sub-path speculation from
SpecCFA and both prefix and Huffman encoding speculation from RESPEC-
CFA)

By default, SpecCFA supports up to 8 sub-path speculations simultaneously.
Therefore, our experiments are also performed varying the number of path spec-
ulations from 1 to 8. The results are presented in Figure 7.

Regardless of whether RESPEC-CFA is used in its entirety or partially, it
enhances SpecCFA in each of the evaluated cases. RESPEC-CFA’s prefix sub-
module enhances SpecCFA by reducing entries that are not a part of program
sub-paths. This is observed in Figure 7 by achieving an additional 27.1-55.6%
CFpo4 reduction from SpecCFA to SpecCFA + prefix. Similarly, RESPEC-CFA’s
Huffman encoding speculation alone alongside SpecCFA further reduces C'Frp g4
sizes by 41.8-79.5% from SpecCFA-generated CF,o4-s.
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Geiger GPS
800 2k
600
400 1k
200
1 2 3 45 6 7 8 1 2 3 45 6 7 8
Sub-paths Sub-paths
Syringe Temperature
1.5k
1.0k
1k
1 23 45 6 78 1 2 3 45 6 7 8
Sub-paths Sub-paths
Mouse Ultrasonic
15k 80
60
10k
40
5k 20
1 2 3 45 6 7 8 1 2 3 4 6
Sub-paths Sub-paths

SpecCFA: |:| SpecCFA +Prefix: |:| SpecCFA+Huffman: - All: -

Fig. 7: Total CFr,4 bytes after executing each application when Prv is equipped
with each speculation strategy.

Finally, the best CFp,, reductions are seen when RESPEC-CFA is fully
equipped alongside SpecCFA. For the evaluated applications, RESPEC-CFA fur-
ther reduced SpecCFA CFlo4-s by 63.7-85.7%. This represents a 91.5-99.7% re-
duction in C'Fr,4 sizes for different applications, if compared to the baseline CFA
(without any speculation-based strategy), demonstrating synergy in speculating
on both CFp,, representation and likely sub-paths.

4.3 Trusted Computing Base (TCB) Size

RESPEC-CFA’s prefix speculation submodule was implemented in 38 lines of C
code, and the Huffman encoding speculation submodule was written in 70 lines
of code. Additionally, RESPEC-CFA required 26 lines of C code to integrate
into SpecCFA. Therefore, RESPEC-CFA in its entirety contributes to a TCB
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Fig. 8: Total Huffman table size on Prv for different applications and RESPEC-
CFA configurations

size increase of 134 lines of C code. This correlates to an additional 1140 bytes
of Secure World program memory.

4.4 Memory Overhead

RESPEC-CFA also requires some Secure World data memory to store the specu-
lation metadata. When speculating on instruction locality, RESPEC-CFA must
store the active prefix and its length (1 byte). As a prefix is always shorter than
4 bytes (given ARM Cortex-M 32-bit architecture), the prefix metadata can be
stored in at most 5 bytes.

Speculating on Huffman codes has a larger memory impact due to storing the
Huffman encoding table. Figure 8 depicts the total size of the Huffman table for
the tested RESPEC-CFA configurations. In our experiments, we used a 1-byte
symbol alphabet to generate Huffman codes, resulting in 256 table entries. Each
entry is composed of the encoding and its length. The size of Huffman codes
varies depending on the attested application and other optimizations enabled
(e.g., SpecCFA or RESPEC-CFA’s prefix speculation). Due to this, the total
size of Huffman codes ranged from 481 to 744 bytes across all tests. The length
of each code is represented as a single byte, resulting in an additional 256 bytes
of overhead. Therefore, when combined, the Huffman table overhead spanned
from 737 to 1000 bytes of additional memory overhead in our experiments.

While the size of the Huffman table does vary, the overhead generally is fairly
consistent for the evaluated applications, best shown in Figure 8(c). However,
in some cases, the size of the Huffman table can change drastically. This sudden
change in size is due to the relative frequency of data in the C'Fr,4-s used to
generate the table. As mentioned in Section 3.4, the more often a symbol ap-
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Fig. 9: Average worst-case added NSC time per log entry for varying (a) numbers
of sub-paths, (b) prefix lengths, and (¢) Huffman alphabet lengths (B. = Baseline)

pears in the dataset (i.e., a given address in CFp,,), the smaller its resulting
Huffman code. Specifically, Huffman codes are generated using a binary Huffman
tree where more frequent symbols are stored higher in the tree [1]. As a conse-
quence, the higher up the tree a symbol appears, the smaller its encoding, but
also the less balanced the tree becomes. Therefore, as the input data becomes
more disproportional, so does the length of encodings in the resulting table.
Thus, the Huffman table’s size greatly depends on the distribution of entries in
CFrog. Changes in input CFpe4-s due to other optimizations (e.g., SpecCFA)
can greatly alter this distribution, leading to the jumps in Huffman table size
seen in Figure 8(c).

4.5 Runtime Overhead

The best CFr 4 reductions are achieved with RESPEC-CFA and SpecCFA com-
bined. However, the additional submodules added to the Secure World execute
upon each NSC. As a result, the execution time increases due to NSC handling.
We evaluate this in two ways. First, we measure the additional time per NSC
call. Second, we evaluate the cumulative overhead caused by all NSC calls during
the execution of each evaluated application.

Additional NSC Time.

Figure 9 shows the average NSC time to process one entry on applications
crafted to target the worst-case timing for each Secure World submodule: Spec-
CFA, prefix speculation, and Huffman encoding speculation.

Figure 9(a) shows the worst-case time to speculate on sub-paths by SpecCFA,
the baseline when RESPEC-CFA extends it. To create the worst-case scenario,
RESPEC-CFA varies the total number of sub-path speculations and configures
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them so all sub-paths mismatch except for the last configured sub-path (i.e.,
when configured with 8 sub-path speculations, all mismatch except for sub-path
8). In this case, there is an initial ~ 9us increase from baseline to 1 sub-path.
After that, there is a linear increase of ~ 2.22us per additional sub-path.

Figure 9(b) shows the worst-case time to speculate on memory address pre-
fixes. For the worst-case application, we craft a program that constantly crosses
the configured prefix range. As described in Section 3.3, a special ID is logged
to denote a change of prefix. Since this ID is the same length as the remaining
suffix, RESPEC-CFA suffers more runtime overhead when the prefix is shorter.
This is because the ID is longer and is logged more often in this worst-case sce-
nario. However, this scenario is unlikely since Vrf would configure prefiz;., based
on the anticipated behavior.

Finally, Figure 9(c) shows the worst-case time to speculate on a Huffman
encoding, which occurs when each byte in the address uses the longest bit-
length code from the Huffman table. To examine the impact of encoding length,
we measure the time for encoding with encoding lengths from 1 to 16 bits.
As shown in Figure 9(c), the total added time generally increases with the bit
length. However, at bit lengths that are multiples of 4, the time improves due to
architectural characteristics that enhance the performance on even bytes/half-
bytes rather than on uneven bit lengths that do not align in this way.

Additional Time for End-to-End CFA.

To determine RESPEC-CFA’s impact on end-to-end attestations times, we
compare the total runtime of RESPEC-CFA equipped attestations with those
performed by the underlying baseline (i.e., unoptimized) CFA architecture. Specif-
ically, we evaluate RESPEC-CFA with prefix speculation, Huffman encoding,
and both enabled. We timed each configuration 20 times and report the average
runtime across experiments. These average runtimes are displayed in Figure 10.

Across all applications, RESPEC-CFA achieved significant end-to-end time
reductions. When using prefix speculation alone, RESPEC-CFA achieved reduc-
tions of 40.7%-49.2%. Similarly, when using Huffman encoding alone, RESPEC-
CFA saw larger total runtime reductions of 46.1%-68.7%. Finally, when using
both speculation strategies, RESPEC-CFA reduced the total runtime by 61%-
87.5% depending on the application. These runtime savings stem directly from
the cost of transmitting C'Fre. Recall from Section 2.4 that some CFA archi-
tectures (including the baseline used in this work) transmit CFp.4 as multiple
CFlpog slices throughout the attestation process. As such, the more slices Prv
must send, the more time is spent performing slower transmission operations.
Thus, by reducing the amount of data that must be stored, RESPEC-CFA also
reduces the number of C'Fp,4 slices that must be sent to Vrf, leading to the
observed runtime reductions.

We also evaluated RESPEC-CFA’s impact on the end-to-end attestation time
of each application when used in conjunction with SpecCFA. In these experi-
ments, we attested each application using SpecCFA, SpecCFA with RESPEC-
CFA’s prefix speculation, SpecCFA with RESPEC-CFA’s Huffman encoding,
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Fig. 10: End-to-End attested execution time: RESPEC-CFA vs. baseline CFA

and SpecCFA with both RESPEC-CFA optimization strategies. For these ex-
periments, SpecCFA was configured with support for 8 sub-path speculations,
and tests were again repeated 20 times, with the average attestation time being
reported. A summary of these results is depicted in Figure 11.

When combined with SpecCFA, RESPEC-CFA’s impact on Prv’s overall
runtime varied widely across applications. For the Geiger Counter, Temperature
Sensor, and Ultrasonic Sensor, RESPEC-CFA had a negligible effect on the ap-
plication’s runtime. In these experiments, RESPEC-CFA decreased the runtime
by -5.8% to 6.8%. While some configurations did increase the runtime of the sys-
tem, this is with respect to SpecCFA alone. Even at its worst, -5.8% with respect
to SpecCFA, this represents a decrease of 93.6% from the baseline CFA architec-
ture. For the remaining applications, RESPEC-CFA achieved larger reductions
of 10.9%-75.6%. For these applications, RESPEC-CFA could further reduce the
number of CFp,, slices sent to Vrf, resulting in the larger impact seen. Re-
gardless, when used in conjunction with existing CFA optimization strategies,
RESPEC-CFA achieves comparable or better end-to-end time reductions.

5 Discussion

5.1 Worst Case Scenarios.

The speculation strategies presented rely on prior CFp,4-s to generate the ap-
propriate encodings. SpecCFA [13] explored static analysis as an alternative to
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Fig. 11: End-to-End attestation time: RESPEC-CFA plus SpecCFA

enable speculations without prior C'Fr4-s. However, they found static analysis-
based speculations performed worse than speculations generated from CFr,,
analysis. Thus, a worst-case scenario occurs when no prior CFp,, exists yet/is
available. Without prior context, neither strategy can accurately predict the ap-
plication’s behavior, resulting in no/minimal savings. If no prior CFpe4-s exist,
RESPEC-CFA defaults to the underlying CFA behavior without RESPEC-CFA
optimization. After obtaining a first C'Fp,, slice, speculations can be generated
normally from it and subsequent C'Fp,4 slices.

The prefix speculation strategy uses a Vrf-defined prefix length to optimize
CFpLog based on the common locality of branch destinations. If a suboptimal
length is chosen (e.g., too long), it is more likely that subsequent CF,, entries
will not share a common prefix resulting in more C'Fp,4 prefix entries and lower
savings. While in theory possible, this scenario is in practice very unlikely due
to the simplicity of finding common prefixes in CFprqg4.

Savings due to Huffman encoding depend on high-frequency symbols in the
alphabet. Thus, if symbols are uniformly distributed in CFp,4, no savings would
occur. Similarly, if a particular CFp,4 has a large number of uncommon symbols,
savings gained from the Huffman encoding may be counteracted by the larger
encoding of rarer symbols. Fortunately, both scenarios are unlikely due to the
type of data in CFp,g, i.e., branch destinations that have small cardinality (a
subset of program memory’s addresses) and occur repetitively.
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RESPEC-CFA with Huffman and prefix strategies in combination (or along-
side other speculation strategies, such as SpecCFA [13]) can further reduce the
likelihood of the above worst-case scenarios as they cover each other’s worst
cases. In the case of poor prefixing, each additional prefix entry adds repeated
symbols to CFp,y. Thus, Huffman encoding would replace these entries with
smaller symbols minimizing their impact. Similarly, since prefixing removes re-
peated portions of memory addresses in C'Fp,,, Huffman encoding can better
optimize the remaining symbols.

Lastly, in some cases, a Huffman table may become larger than the savings
it yields in a single CFA instance. However, since the same table can be reused
across multiple CFA responses, the protocol bandwidth savings grow linearly
with the number of protocol instances while the storage cost remains constant.
Thus, Huffman encoding is still likely to be cost-effective over multiple instances
(i.e., over time).

5.2 RESPEC-CFA with Interrupts

Embedded applications often rely on interrupts for real-time event handling.
When an interrupt occurs, the application is paused and execution jumps to an
associated ISR to handle the event. Once the ISR is finished, execution returns
to the program and the application resumes. Therefore, interrupts affect an
application’s control flow paths. RESPEC-CFA inherits support for interrupts
from the underlying CFA architecture it builds upon. Some CFA schemes allow
interrupts but do not log them to C'Froy [39]. In this case, interrupts do not
affect RESPEC-CFA’s speculation strategies as they do not appear in CFp,.
For architectures that record interrupts [12,66,63], RESPEC-CFA can speculate
on interrupts similar to regular branch addresses in CFpq4.

5.3 RESPEC-CFA in High-End Systems

As discussed in Section 3.1, RESPEC-CFA is envisioned for MCUs with limited
memory and resources to transmit large C'Fp,4-s. Albeit not designed for high-
end devices (or complex Systems-on-Chip), RESPEC-CFA concepts should also
apply in that setting. Larger systems have larger applications and thus more var-
ied CF'roq4 entries. Yet, certain instructions/addresses will still occur more often
than others. Therefore, Huffman encoding and prefix speculations would still
result in savings. That said, regardless of conceptual applicability, in a high-end
system, the cost to compute Huffman encodings or determine common prefixes
on the fly (or in parallel) might be relatively small or negligible. This could
obviate the demand for Vrf-based path speculation observed in MCUs.

6 Conclusion & Future Work

We propose RESPEC-CFA to enable speculation and C'Fr,,4 optimization based
on two new properties. First, RESPEC-CFA allows Vrf to speculate on the local-
ity of branch destinations, reducing C'Fr,4 size based on shared prefixes across
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sequences of destinations. Second, RESPEC-CFA enables speculation on the
Huffman encoding of C'Fp .4, replacing entries with their corresponding Huffman
code at C'Fpo4 construction time. We implement an open-source RESPEC-CFA
design and evaluate it [68]. Our experiments show that RESPEC-CFA results in
significant C'Fr4 reductions with little runtime cost. When coupled with prior
work in SpecCFA [13], further savings are obtained.

Future work on RESPEC-CFA spans several directions. One avenue is de-
veloping static analysis techniques for speculation, which would allow Vrf to
generate initial speculations directly from source code or binaries rather than
relying on prior execution logs. This poses the challenge of tuning these specu-
lations without runtime context, requiring methods that can reason about data
and control flow representations statically. Another promising direction involves
hardware integration, where custom hardware extensions could reduce runtime
and memory overheads while enabling efficient support for RESPEC-CFA on
lower-end MCUs. A central challenge here is representing Huffman encoding
tables in a hardware-efficient manner.

Further exploration possibilities include alternative encodings and alphabets,
such as arithmetic coding [75], which may better support large alphabets without
imposing excessive storage costs. Leveraging application-specific knowledge (e.g.,
valid control flow targets) could also help reduce encoding complexity, though
careful handling of unexpected addresses remains necessary for attack detection.
Finally, extending speculation to data flow attestation (DFA) [15,46,4], which
extends CFA to also include data flow events in hopes of detecting non-control
data-only attacks, is also an interesting area for future work.

Acknowledgments. We thank ACNS anonymous reviewers and shepherd for their
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