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Abstract—Control Flow Attestation (CFA) has emerged as an impor-
tant security service to enable remote verification of control flow paths in
safety-critical embedded systems. However, current CFA for commodity
devices suffers performance penalties due to code instrumentation and
frequent context switches required to securely log control flow paths
at runtime. Our work introduces RAP-Track, a technique leveraging
commodity hardware extensions, namely Micro Trace Buffer and Data
Watchpoint and Trace Unit, to track control flow paths in parallel with
the execution of the attested program, thus avoiding aforementioned over-
heads present in state-of-the-art CFA. Our evaluation (based on an open-
source prototype of RAP-Track) demonstrates substantial performance
gains, enhancing practicality and security of CFA.

I. INTRODUCTION

Embedded systems play vital roles in interfacing the physical and
digital worlds. They are often deployed remotely for on-demand
sensing and/or actuation in critical operations. In these settings, low-
power micro-controller units (MCUs) are preferred for their energy
efficiency. MCUs – typically having low CPU frequencies with
minimal resources – lack the robust security features found in fully-
fledged computers, such as memory management units (MMUs),
virtual memory, and inter-process isolation. As a result, they become
prime targets for attacks [1].

In this landscape, Remote Attestation (RA) [2] has become a
popular method to remotely verify the integrity of MCUs. In RA,
a Verifier (Vrf) wants to ascertain the current software state of a
remotely deployed Prover MCU (Prv). This is realized as a challenge-
response protocol in which Vrf sends a challenge (in the form of a
cryptographic nonce) to Prv. Upon receiving the challenge, a Root
of Trust (RoT) in Prv is responsible for computing an authenticated
integrity-ensuring function (e.g., a MAC or digital signature) on the
received challenge and Prv’s program memory. Based on the result,
Vrf can determine whether Prv’s code has been illegally modified.

By itself, RA does not detect runtime attacks (e.g., Return/Jump-
Oriented Programming [3], [4]) that corrupt software execution with-
out modifying code. Control Flow Integrity (CFI) [5], [6], [7], [8], [9],
[10], [11] can, to some extent, detect runtime attacks locally on Prv
and abort execution. However, it does not produce attestable evidence
of the unintended control flow paths that led to the exploit [12].
Alternatively, Control Flow Attestation (CFA) generates authenticated
evidence of Prv’s runtime behavior, granting remote visibility to
runtime attacks. CFA augments RA by including Prv’s execution
control flow path (for a given Vrf-defined operation/function of
interest) as part of the attestation evidence received by Vrf. To
accomplish this, the RoT within Prv saves all control flow transfer
destinations (e.g., due to jump, return, and call instructions) during
an operation’s execution in a control flow log (CFLog). Then, CFLog is
signed along with the received challenge and Prv’s program memory
and sent to Vrf for assessment.

Current CFA RoTs build CFLog with either: (1) customized
hardware that interfaces with the CPU to detect/log control flow
instructions in parallel to their execution [13], [14], [15], [16]; or

(2) instrumentation of the attested application with calls to Trusted
Execution Environment (TEE)-protected software that tracks the
control flow path before returning to the application [17], [18], [19],
[20], [21]. Both approaches involve trade-offs. Mechanisms relying
on custom hardware require new MCU chip fabrication, making them
unsuitable for immediate deployment in commercial devices. On the
other hand, CFA mechanisms that use TEEs can be readily deployed
on current devices. However, associated code instrumentation leads to
significant overheads due to added instructions and frequent context
switches into TEE-protected mode for control flow logging. Only one
prior technique [22] leverages a commodity hardware feature – Intel
Processor Trace (PT) – for CFA, thus reducing code instrumentation.
However, this feature is only available in high-end Intel CPUs,
making the approach infeasible in MCUs.

In terms of MCU-specific hardware features, ARM has introduced
the Micro-Trace Buffer (MTB), enabling real-time control flow trac-
ing of a program’s execution [23]. Additionally, the Data Watchpoint
and Trace (DWT) extension allows for monitoring of the processor’s
operations based on Program Counter (PC) values. Naturally, prior
work has leveraged MTB for Control Flow Integrity (CFI) [5], [6]
without instrumentation. Yet, the use of MTB for CFA introduces
unique challenges that remain to be addressed. Unfortunately, MTB
logs all control flow transfers, including (a very large number of)
branches to fixed addresses (a.k.a. deterministic branches) that are
unnecessary for CFA, given their fixed behavior. Since CFI processes
this data locally on Prv, this overhead (while substantial) may
be acceptable if Prv’s execution can be periodically interrupted to
examine and discard the generated control flow data. For CFA,
since the entirety of CFLog is transmitted to Vrf, the latter creates
a significant bottleneck.

In sum, despite reducing runtime overhead due to context switches
and instrumentation, the naive usage of MTB to log transfers would
generate much larger CFLog-s than state-of-the-art TEE-based CFA.
As a consequence, more memory to store CFLog would be demanded
(on already limited MCUs), or constant interruptions to clear un-
necessary CFLog entries would add delays to application runtime.
Figure 1 illustrates this point, showing memory and timing demands
of naive MTB-based logging in comparison to a state-of-the-art
instrumentation-based CFA [24] on various open-source embedded
applications: an ultrasonic ranger [25], a Geiger sensor [26], a
Syringe Pump [27], a Temperature sensor [28], a GPS [29], as well
as test applications from the BEEBs benchmark [30]. As seen in
Figure 1(a), CFLog sizes generated by a naive MTB-based approach
are significantly larger (1.9 to 217× larger on tested applications). On
the other hand, instrumentation-based CFA adds significant runtime
overheads (e.g., 1.1 to 14.1× increase on tested applications), as
shown in Figure 1(b).

In this work, we propose an approach to combine MTB and DWT
hardware extensions with an optimal strategy for linking of attested
code sections. With this approach, we are able to reduce both CFLog



(a) Comparison of CFLog size

(b) Comparison of Runtime Overhead

Fig. 1: Comparison CFLog sizes and runtime overhead of naive MTB-
and Instrumentation-Based CFA

storage/transmission costs (due to naive MTB-based logging) and
runtime overheads (due to code instrumentation and frequent context
switches required by prior work).

Contribution. We propose RAP-Track: a method for Runtime
Attestation via Parallel Tracking in commodity MCUs. RAP-Track
leverages commodity hardware features of ARM MCUs – namely,
MTB, DWT, and TrustZone (TZ) – in combination with strategic
linking of attested code sections. DWT is used to define memory
regions that control MTB activation and deactivation. RAP-Track
offline static analysis module links code sections so that only branches
that are essential for complete control flow reconstruction by Vrf
are logged while also obviating context switches into TEE-protected
mode during execution. We implement and evaluate RAP-Track on an
ARM Cortex-M33 MCU using the V2M-MPS2-0318C prototyping
system [31]. RAP-Track prototype is publicly available at [32].

II. BACKGROUND & RELATED WORK

A. Armv8-M Trustzone

TZ is a security extension for ARMv8 Cortex-M MCUs that creates
a TEE by partitioning CPU resources into two separate domains:
“Secure” and “Non-Secure” worlds. Each domain is configured with
its own isolated memory and peripherals [33]. When the CPU is in
a Non-Secure state, it can access only Non-Secure resources. In the
Secure state, it can access both Secure and Non-Secure resources but
is restricted to executing only Secure code. In the absence of virtual
memory or MMUs, Cortex-M uses a Memory Protection Unit (MPU)
for physical memory access control. With TZ, the MPU splits into
Secure (S-MPU) and Non-Secure (NS-MPU) segments, with S-MPU
access restricted to the Secure World and NS-MPU accessible to both
worlds.

B. ARM Hardware Tracing Units

1) MicroTrace Buffer: The MTB [23] is a hardware extension
introduced in ARM Cortex-M processors to enable lightweight, real-
time control flow tracing of program execution. The MTB operates by

recording every non-sequential memory address executed while it is
activated. Unlike software-based instrumentation, which introduces
significant performance overhead, the MTB operates with minimal
impact on the CPU’s performance.

The MTB uses a small, circular buffer located in the system’s
memory to store the trace data. As the program executes, the
MTB captures branch instructions and writes the source address
and destination address of the instruction into this buffer. In RAP-
Track, this buffer contains CFLog. Once the buffer is full, it wraps
around and overwrites the oldest data, ensuring that the most recent
execution flow is always available for analysis. It is possible to
configure a Watermark (using MTB FLOW register) to set a limit
to the buffer that will generate a debug exception when the buffer
reaches the Watermark. RAP-Track leverages this feature to generate
partial reports (discussed further in Sec. IV-E).

There are two primary methods to activate MTB tracing. The
first method involves directly setting the ‘TSTARTEN‘ bit in the
‘MTB MASTER‘ register, which enables the recording of all non-
sequential branches from that point forward. Alternatively, the
‘MTB TSTART‘ and ‘MTB TSTOP‘ registers can be used to start
and stop the MTB tracing based on signals from the Data Watchpoint
and Trace comparators.

2) Data Watchpoint and Trace: The DWT unit in the ARM
Cortex-M33 processor [23] is a hardware extension that provides a
way to monitor processor operations to specific memory ranges (such
as reads, writes, and executions). It includes up to four configurable
comparators, each of which can configured to generate watchpoint
events when a specific memory address is accessed [34]. The DWT
is integrated with the MTB, allowing DWT comparators to activate
and deactivate the MTB Tracing based on DWT events. For example,
two DWT comparators can be set to monitor a specific address range.
Then, when the software within this range executes, the DWT triggers
an event to MTB START, initiating control flow tracing. Another
set of DWT comparators can be configured to trigger MTB STOP,
ending the trace when the PC exits the specified range. RAP-Track
uses the DWT in this way to activate/deactivate the MTB (discussed
further in Sec. IV-B).

C. Remote Attestation

Remote attestation (RA) is a security service that allows a Verifier
(Vrf) to assess the integrity of the code of a remote device, known
as the Prover (Prv). The RA protocol usually follows four steps:
(1) Vrf creates a unique Chal and sends an RA request to Prv.
(2) Prv receives the request and measures its code or internal state,

generating the attestation proof.
(3) Prv produces a proof that is authenticated with a signature or

message authentication code (MAC).
(4) Vrf receives the proof and verifies whether Prv has a valid

internal state.
The signature/MAC operation attests to Vrf that Prv’s RoT is

the generator of the proof. For this purpose, a secret key must be
securely stored and managed exclusively by the RoT, ensuring it
remains protected from any untrusted software on Prv. As such,
RA mechanisms usually depend on hardware support (whether a
fully hardware-based mechanism using standalone cryptographic co-
processors [35], [36], [37] or a hybrid scheme using partial hardware
support [38], [39], [40], [41], [42], [43], [44], [45]).

D. Control Flow Attestation

Control Flow Attestation (CFA) extends RA by also providing
evidence that an application’s instructions were executed in a correct



sequence. This capability provides detection of Return-Oriented Pro-
gramming (ROP) [3] and Jump-Oriented Programming (JOP) [4] at-
tacks that can manipulate existing return/jump instructions to achieve
Turing-complete behavior without altering the code.
CFA is achieved by requiring the RoT in Prv to generate and mea-

sure the control flow path followed during the application’s execution.
This requires recording all control flow transfers (e.g, due to jumps,
calls, or returns) into CFLog. Current CFA approaches employ either
hardware [16], [14], [13], [15], [46], [22], [47] or instrumentation-
based methods [48], [49], [17], [18], [24], [19], [20], [21], [50],
[51] to create CFLog. Hardware-based methods introduce custom
hardware modules that interface with the CPU to detect/log control
flow transfers as they occur [16], [14], [13], [15]. While efficient,
these methods are incompatible with commodity devices. In contrast,
instrumentation-based methods use existing TEE support (such as
ARM TZ) for secure logging of an instrumented application [17],
[18], [24], [19], [20], [21], [50].

TEE-based methods usually instrument all the control flow instruc-
tions in the application code, adding instructions that call the TEE
(via dedicated non-secure callable entry points) to record each branch
destination into CFLog-dedicated Secure World memory. Due to
frequent context switches, these approaches typically add significant
runtime overhead, as each branch requires a transition from the Non-
Secure to the Secure World to record the event. To mitigate this
overhead, different CFA methods operate at varying levels of control
flow granularity, selectively logging only critical code sections to
reduce CFLog overhead [19], [20]. We refer to these selective methods
as ”lossy” CFA, where Vrf cannot reconstruct the entire control flow
path. In contrast, ”lossless” CFA enables Vrf to fully recover the
application’s control flow path. The advantage of lossless CFA is that
by recovering the full control flow path in CFLog, Vrf can validate
the entire execution path and observe any unintended/maliciously
induced transitions. Additionally, lossless evidence could potentially
grant visibility to attacks that do not directly overwrite branch des-
tinations [12]. Naturally, CFLog-s generated by lossless control flow
mechanisms are larger, which correlates to more context switches for
appending CFLog [17], [18], [20], [19], [21], [24], [50].

To avoid runtime costs of instrumentation, dedicated hardware
tracing components can be used, when available. Papamartzivanos
et al. [22] proposed a technique that leverages Intel PT to trace low-
level mission-critical processes. However, since Intel PT monitors
everything within a code region, applying it alone can lead to large
CFLog-s. Thus, the authors consider analysis within the context of
one target function. Additionally, [22] cannot be directly applied to
embedded systems since it relies on Intel PT, which is only available
in high-end Intel processors. A similar strategy is deployed by
LAHEL [46], which uses off-chip debug features of ARM Coresight
System Trace Macrocell technology in combination with TrustZone
to implement CFA. In this case, the Program Trace Macrocell
(PTM) [52] debug component is used to monitor program’s execution
in parallel. LAHEL leverages the PTM to log all branches taken and
records the count of all branches not taken. Consequently, LAHEL
records repeated branch-taken addresses due to loops. Additionally,
LAHEL relies on external debug features rather than on-chip tracing
units, such as MTB and DWT.

To our knowledge, MTB and DWT have only been used as a
building block for CFI schemes [6], [5]. However, CFI has a fun-
damentally different goal than CFA: CFI mechanisms aim to locally
detect control flow violations and abort execution upon detection,
whereas CFA aims to generate authenticated evidence of the control
flow path that was followed, whether it is benign or malicious [12].

Given their distinct goals, schemes that used MTB/DWT for efficient
CFI cannot be applied directly to achieve efficient CFA. For instance,
CFI methods utilizing MTB/DWT add additional steps into the local
verification process that first filter redundant information from the
MTB. Since CFA performs no local verification, the communication
cost of CFLog when applying MTB would be incredibly costly,
nullifying improvements on the application’s runtime.

III. SYSTEM AND ADVERSARY MODEL

Prv is a single-core MCU equipped with a TEE (e.g., TZ in RAP-
Track) running software at “bare-metal”. The attested application
(APP) executes in the Non-Secure World. RAP-Track implementa-
tion is housed in the Secure World (which is trusted). Prv is equipped
with MTB and DWT hardware extensions. MTB and DWT are trusted
to correctly implement their specification.

Adv fully controls Prv’s Non-Secure World and is able to alter
its code (e.g., via code injection attacks) or launch control flow/code
reuse attacks. Given TZ protections (discussed in Section II-A), Adv
cannot access or tamper with code or data in the Secure World.
Similarly, it cannot deactivate or circumvent TZ hardware-enforced
access control rules and assurances. Physical and hardware-modifying
attacks require orthogonal tamper resistance measures [53] and are
thus out our scope.

In this work, our treatment of CFA assumes that Non-Secure World
interrupts are disabled during the execution of APP. We treat interrupt
enablement as an orthogonal issue and refer the reader to [18], [54],
[55] for a discussion on security implications and approaches that
could complement RAP-Track by supporting safe interruptability.

IV. RAP-TRACK DESIGN

RAP-Track tailors MTB/DWT usage for efficient CFA. RAP-
Track’s use of MTB reduces the number of Secure World calls for
updating CFLog, while its static linking strategy prevents logging irrel-
evant information (e.g., deterministic or repeated branch destinations)
into CFLog by MTB. As a result, RAP-Track reduces both the runtime
cost of instrumentation and the storage cost of MTB-generated CFLog-
s. As shown in Figure 2, RAP-Track high-level operation includes:

Offline Phase. Prior to code deployment, RAP-Track static anal-
ysis phase divides APP into two regions: the MTB Activation
Region (MTBAR) and the MTB Deactivation Region (MTBDR)
(see Section IV-B for details on each region). All deterministic
control flow transfers of APP are placed in the MTBDR, while non-
deterministic transfers (e.g., indirect jumps/calls, returns, and condi-
tional branches) are moved to the MTBAR. Their previous locations
in APP are replaced with direct branches (i.e., trampolines) targeting
their new addresses in MTBAR (details in Section IV-C). When the
MCU executes a trampoline instruction, it directly branches to the
MTBAR region, where the original branch operation is executed and
thus measured by the MTB. This approach ensures that only non-
deterministic branch destinations are recorded to CFLog.

Execution Phase. When Prv receives a request for CFA of APP,
it initializes the CFA Engine (Section IV-A) to start the CFA process.
In RAP-Track this includes configuring MTB to track APP ’s control
flow path. APP execution then starts in the Non-Secure World.
During APP’s execution, branches that were linked within MTBAR
are logged to CFLog by the MTB. Once APP execution concludes,
an authenticated CFA report (as outlined in Sections II-C and II-D)
is generated and sent to Vrf.

A. CFA Engine

To start CFA of an APP, the CFA Engine disables all the Non-
Secure interrupts and configures the NS-MPU to make APP’s binary



Fig. 2: System Model

non-writable. The NS-MPU is then locked to prevent modifications
by the Non-Secure World, following prior CFA methods (e.g., [24]).
Afterward, the CFA engine hashes all code associated with APP,
producing HMEM . Next, it configures the DWT and MTB so that
MTB is enabled while executing within MTBAR and disabled while
executing within MTBDR. After this setup, APP execution is called
in the Non-Secure World. As a consequence of this configuration,
for each section of APP code executed in MTBAR, the MTB logs
the source and destination of all non-sequential branch operations to
CFLog. Once execution concludes, RAP-Track implementation in the
Secure World signs a report containing Chal, HMEM , and CFLog

using a private key stored within the Secure World and sends the
report to Vrf.

B. DWT-based MTBAR and MTBDR Activation

RAP-Track static analysis divides APP code layout into MTBAR
and MTBDR based on the instruction type, and inserts trampolines
to connect them (discussed further in Section IV-C). All instructions
with non-deterministic branch destinations are added into MTBAR,
and everything else is added into MTBDR (i.e., non-branch instruc-
tions and deterministic branches). Based on this organization of
instructions, RAP-Track must activate the MTB when executing the
MTBAR region, and deactivate when executing the MTBDR region.
Activation/deactivation is done via DWT as follows:

MTBAR: Two DWT comparators are used to define the MTBAR’s
boundaries: one for the base address and the other for the upper limit
address. DWT then automatically activates the MTB when the address
of the currently executing instruction (PC) is within these bounds.
This is achieved by having the DWT set the ‘MTB TSTART‘ register
when PC points to an address within MTBAR, thus activating the
MTB. Based on this configuration, MTB does not record transitions
from MTBDR into MTBAR.

MTBDR: Two additional DWT comparators are used in a similar
fashion, except in this case they set ‘MTB TSTOP‘ register when PC
is within the bounds of MTBDR. Based on this configuration, MTB
does record transitions from MTBAR to MTBDR.

C. Branch Trampolines

This section explains how RAP-Track instruments different types
of branch instructions to be able to track APP’s control flow.

Statically Deterministic Branches. RAP-Track does not track
static branches, such as jumps to constants and simple loops with
fixed iteration counts because their destinations cannot be modified
at runtime. Static branch instructions remain in MTBDR, as their
targets are can be obtained statically by Vrf from APP’s binary [19],
[24] and need not be logged.

Non-Deterministic Branches includes branches caused by indirect
jumps/calls, function returns, loops with variable iteration counts,

and loops with internal branches, where the target address is not
static/deterministic. Target addresses of these instructions must be
recorded in CFLog, as they are necessary for Vrf to reconstruct the
entire control flow path. These instructions are moved from their
original location in MTBDR to MTBAR. Trampoline instructions
targeting the new addresses in MTBAR replace the original branch
instructions in MTBDR. The trampoline type depends on the type of
non-deterministic branch instruction.

Original Code

(1) BLX Register

Modified Code

(1) BL MTBAR_ADDRESS
...

MTBAR_ADDRESS:
BX Register

Fig. 3: Trampoline for indirect call

1) Indirect Calls.: Indirect calls perform a call to a destination
specified in a register. Figure 3 shows the trampoline placed by
RAP-Track for indirect calls. Each indirect call is replaced with a
direct call to a fixed address within the MTBAR (MTBAR_ADDRESS
in Figure 3). Then, at MTBAR_ADDRESS, an indirect branch to the
original register is placed.

Original Code

POP {PC}

Modified Code

B MTBAR_POP_ADDR
...
MTBAR_POP_ADDR:

POP {PC}

Original Code

LDR PC, [sp, #4]

Modified Code

B MTBAR_LDR_ADDR
...
MTBAR_LDR_ADDR:

LDR PC, [sp, #4]

Fig. 4: Trampolines for returns and indirect jumps

2) Returns and Indirect Jumps.: In ARMv8-M, when a call
instruction is executed, the return address is stored in a reserved
register called the Link Register (LR). The compiler pushes LR onto
the stack only if the called function contains a nested function call;
otherwise, the return is performed using a branch to LR. In this case,
if no operations within the function modify LR, the return address
remains unchanged throughout the function’s execution, making it
predictable. Therefore, RAP-Track does not monitor these cases
and instead focuses on monitoring return operations only when the
contents of LR have been pushed onto the stack.

Given this insight, monitored return instructions and indirect jumps
(used for C-switch statements) have equivalent implementations as
either: (I) a POP to the PC; (II) or a memory load LDR into PC.



RAP-Track inserts trampolines for both cases in the same way, as
depicted in Figure 4. First, a direct branch to the MTBAR is inserted
in place of the original return/indirect jump instruction. A direct
branch to MTBAR_POP_ADDR (or MTBAR_LDR_ADDR) is used to
replace a return/indirect jump via POP (or LDR) instruction. Once in
the MTBAR, the original POP (or LDR) instruction is executed to
complete the return/indirect jump.

3) Conditional Branches: In C, both if/else statements and any
form of loop use conditional branch instructions. To optimize the
information recorded by MTB to CFLog, RAP-Track conditional
branch trampoline varies in three cases:
(1) non-loop conditional branches
(2) loops conditional branches that jump “backward”
(3) loops conditional branches that jump “forward”

Original Code

CMP R0,#0
(1) BEQ taken_address

Modified Code

CMP R0,#0
(1) BEQ MTBAR_ADDRESS

...
MTBAR_ADDRESS:

B taken_address

Fig. 5: Trampoline for non-loop conditional branches

3.1) Non-loop Conditional Branches. When a conditional branch
is not part of a loop (e.g., used to implement an if/else statement),
compilers often optimize the conditional branches of if/else state-
ments by branching to the less likely path, leaving the more probable
path as a fall-through, which helps avoid CPU pipeline stalls. Based
on this insight, RAP-Track inserts a trampoline so that MTB only
records the branch-taken address to minimize the size of CFLog, as it
is the less likely direction of the instruction (where the most likely
path is implicitly represented by the absence of an entry in CFLog).
In the example of Figure 5, the branch-taken address of conditional
branch instruction (BEQ) is replaced with a fixed address in MTBAR.
Then in MTBAR, a direct branch is added that jumps to the original
branch-taken address.

Original Code

loop_start:
...
CMP R0,#0

(1) BEQ loop_start

Modified Code

loop_start:
...
CMP R0,#0

(1) BEQ MTBAR_ADDRESS
...

MTBAR_ADDRESS:
B loop_start

Fig. 6: Trampoline for backward loop conditional branches

3.2) Backward Loop Conditional Branches. In contrast to non-
loop conditional branches, the more likely branch destination depends
on whether the loop conditional branch is implemented with a
“backward“ or “forward“ conditional branch. First, we consider a
loop that is implemented with a backward conditional branch. We
refer to “backward” conditional branches as those with a destination
address that is smaller than the current instruction address. When im-
plemented with a backward conditional branch, the branch destination
indicates the loop’s start, as depicted in Figure 6. RAP-Track should
ensure CFLog reflects all iterations of the loop to ensure evidence is
lossless. Therefore, a trampoline similar to the non-loop condition
case is added to log each branch-taken address.

3.3) Forward Conditional Branches. We refer to conditional
branches where the destination address is greater than the current
address as “forward” branches. Loops, in some cases, can be imple-
mented with forward branches. When this occurs, the branch-taken
address is the loop’s exit, and the loop is continued through the
branch-not-taken path. Therefore in order to record each loop iteration

in CFLog, RAP-Track inserts trampolines for forward conditional loop
branches to log the not-taken address. This is depicted in Figure 7.

Original Code

CMP R0,#0
BEQ loop_end
ADD R1, R2, R3
...

loop_end:
...

Modified Code

CMP R0,#0
BEQ loop_end

(1)-> B MTBAR_ADDRESS
br_not_taken_addr:

ADD R1, R2, R3
...

loop_end:
...

MTBAR_ADDRESS:
B br_not_taken_addr

Fig. 7: Trampoline for forward loop conditional branches

In the modified code, the compare and conditional branches are
not modified since they implement the loop exit. Instead, RAP-Track
inserts a direct branch directly after the conditional branch to the
MTBAR to log the branch-not-taken address. This branch jumps to
a fixed address in the MTBAR that trampolines back to the modified
code at the original branch-not-taken address. In this example, it
branches back to br_not_taken_addr, the location of the ADD
instruction that previously followed the loop conditional branch.

Adding the loop trampolines depicted in Figures 6 and 7 is only
required when there are non-deterministic branch instructions within
the loop or when the loop condition is based on a variable.

D. Loop Optimization

Several CFA methods (e.g., [17], [19], [24], [15]) add loop op-
timizations to avoid redundant CFLog entries. To reduce the impact
of loops on CFLog, RAP-Track adds minimal instrumentation to log
the loop condition itself, similarly to prior work [50], [24]. RAP-
Track adds this instrumentation when the loop comparison is made
to a fixed constant value, the loop iterator is based on register-only
operations (e.g., only arithmetic instructions rather than loads/stores),
and when its internal branches are all deterministic. These “simple”
loop characteristics are very common in MCU applications (e.g., to
implement data operations over buffers or control loops that sense
data for fixed periods). The instrumentation adds a call to the CFA
Engine before the loop entry to log the loop condition in CFLog.

E. Partial Reports

Prv might be equipped with limited memory to store CFLog that
fills in the middle of APP execution. To manage this, RAP-Track sets
the ‘MTB FLOW‘ register to limit CFLog’s size. When CFLog size
equals the watermark, an exception is triggered in the Secure World
to generate and transmit a partial report to Vrf. Afterward, the head
pointer of CFLog is reset, and then APP resumes, allowing MTB to
overwrite the same memory designated for storing CFLog.

F. Security Analysis

To bypass RAP-Track, Adv must alter control flow in a way that
goes undetected while producing valid proof accepted by the Vrf. One
approach is modifying APP binary directly. However, CFA Engine
hashes and locks APP ’s memory: any changes trigger a memory
fault, invalidating the report. Attempts to manipulate control flow
without detection fail, as all indirect branches are logged to CFLog

by MTB, and CFLog is built and stored within protected memory in
the Secure World. Forging or replaying the report is also infeasible
as long as a cryptographically secure signature (or MAC, in the
symmetric setting) and fresh challenge are used for each CFA request.
Finally, Adv cannot deactivate/misconfigure MTB or DWT because
they are only configurable by the Secure World.



Fig. 8: Runtime Comparison

Fig. 9: CFLog Size Comparison

Fig. 10: Code size comparison

V. IMPLEMENTATION & EVALUATION

We implemented RAP-Track proof-of-concept prototype (publicly
available at [32]) on the V2M-MPS2-0318C prototyping system
[31], which is equipped with an AN505 Arm Cortex-M33 FPGA
image [56] based on the ARM Cortex-M33 (v8) architecture with
support to TZ, MTB, and DWT extensions. RAP-Track Secure
World code occupies 11 kilobytes (KB) in total with the CFA
Engine occupying 2.8 KB. RAP-Track static analysis/linking code
used in the Offline Phase is written in Python and operates directly
on post-compiled binaries. We evaluate RAP-Track’s memory and
runtime overhead on real MCU applications (the same open-source
applications listed in Section I). These applications are the same
used in prior work, enabling direct comparison. RAP-Track perfor-
mance is compared to TRACES [24]: a TEE-based CFA architecture
implementing state-of-the-art CFLog optimizations. We note that,
while other CFA architectures (e.g., [17], [19]) also implement
optimizations similar to TRACES, TRACES open-source availability
enables our comparison (whereas we are unable to compare to closed
source CFA architectures). In addition to TRACES, as a baseline for
runtime, we consider unmodified APP-s without any CFA-enabling
instrumentation and associated overheads. For the baseline on CFLog

size and code size, we use the naive MTB-based logging discussed
in Section I.

A. Runtime Overhead

The runtime overhead of instrumentation-based CFA methods is
primarily due to three factors: trampolines that invoke the CFA
Engine API, context switches between the Non-Secure and Secure
Worlds, and the logging algorithm (along with optimizations). In

contrast, RAP-Track’s overhead mainly comes from trampoline in-
structions for branching between MTBAR and MTBDR, with the
only context switches required being to log loop conditions. The naive
MTB approach incurs no overhead as it lacks any instrumentation.
Figure 8 shows the CPU cycles required by each method in the sample
APP-s. RAP-Track adds from 2% to 62% in CPU cycles over the
naive MTB approach, whereas TRACES overhead ranges from 7% to
1309%. Differences across APP-s are due to the varying frequency
of control flow transfers in their implementations.

B. CFLog Size

The size of CFLog-s generated by each method is shown in
Figure 9. CFLog sizes of RAP-Track and TRACES across APP-s
vary depending on the optimizations and execution paths taken in
each case. For instance, RAP-Track only records the branch taken
in if-else statements, so the frequency of each path directly impacts
CFLog size. Additionally, loop optimizations can substantially reduce
CFLog size, as demonstrated in the results from the Ultrasonic Sensor
and Syringe applications, highlighting that RAP-Track produces
significantly smaller CFLog-s than naive MTB. The differences in
CFLog size between RAP-Track and TRACES depend on the specific
application and optimizations used. It is also possible to implement
instrumentation-based CFA that records the exact branches tracked
by RAP-Track. Results on prime and gps applications (from the
BEEBs benchmark [30]) show that RAP-Track achieves considerably
better runtime while producing similarly sized CFLog-s. We also note
that in lossless CFA, Prv must pause APP to send partial reports
when CFLog assigned memory reaches capacity. Thus, CFLog size
directly impacts communication overhead/latency, often becoming the
system’s primary bottleneck (see [57]). For example, the ARM-M33
MTB used in our prototype has a 4KB limit, which would cause
applications that use a naive MTB approach to frequently pause for
partial report transmissions in most cases. In contrast, RAP-Track can
fit all transfers within 4KB in most of the tested applications, only
requiring one transmission to Vrf (once APP execution completes)
and thus avoiding pauses.

C. Program Memory Overhead

Figure 10 presents the code size of each application, showcasing
the impact of instructions introduced by RAP-Track trampolines and
the TRACES instrumentation. In most APP-s, RAP-Track incurs
slightly more code size overhead, with a significant variation based
on the density of indirect and conditional branches. This additional
overhead is primarily due to RAP-Track requiring extra instructions
in conditional loops compared to TRACES. Additionally, ’nop’
instructions were added in MTBAR trampolines to allow the MTB
sufficient time to activate before logging a branch, as the MTB
hardware activation is not immediate upon entering the MTBAR.

VI. CONCLUSION

This paper presents RAP-Track, a TEE-based CFA mechanism
to minimize instrumentation and context switches in “off-the-shelf”
commodity MCUs. RAP-Track static linking organizes all non-
deterministic branches into a monitored region to optimize MTB-
logging for CFA by leveraging PC-based hardware controls from
the DWT extension. RAP-Track offers considerably more efficient
runtime while maintaining a similar CFLog size as state-of-the-art
methods. RAP-Track prototype is publicly available at [32].
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