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Computing on the Cloud

Outsourcing computations to the cloud has become incredibly common
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Computing on the Cloud

e Toleverage cloud services on secrets, User’s might encrypt their data in-transit
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Computing on the Cloud

Using a shared shared key, the cloud would decrypt the secrets to compute their outputs
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Computing on the Cloud

Servers transmit the encrypted output back to the user
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Computing on the Cloud

e Sincedatais decrypted during computations, could lead to potential leakages
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A solution: Homomorphic Encryption (HE)

e Produces ciphertexts that can undergo computations without decryption

e Protect data while in-storage, in-transit, and in-use

Toy Example:
Encrypt(im) =2*m  Decrypt(c) =c/?2
Encrypt Decrypt Encrypt Decrypt
[10,6] f:2m > 16

e Partially (add. or mult.) or Fully (add. and mult.) homomorphic



Computing on the Cloud

e With support for HE, computations can take place without ever revealing the secrets
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Challenge: Making HE ciphertexts resilient

e How can we handle datalosses in the cloud?
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Common approach: Erasure codes

Compute erasure codes over plaintext to enable recovery
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The problem with erasure codes and HE ciphertexts

How can it be applied to ciphertexts?

e Iftrivially applied, would be computed on the ciphertext level

Plaintexts Hom.Enc() Ciphertexts GenerateCodes() Codewords

e Problem:

o Storage impact of codewords is proportional to input
o HE ciphertexts can be LARGE — Ciphertexts can be large polynomials (Ring-LWE based

FHE)
m ~6000% size increase from plaintext



Alternative: Codewords first, then encrypt

A version Encrypting-with-Redundancy

e Not well studied for Homomorphic Encryption

Plaintexts GenerateCodes() Codewords

Hom.Enc() Ciphertexts
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e Problem:
o Assume the ciphertexts are not operated on, or only supported for partial homomorphic
operations
o Not applicable for fully homomorphic schemes
o Not applicable for variety of complex cloud computing operations




To bridge this gap: X-Cipher

e Enablesrecovery of fully homomorphic ciphertexts without decryption

e leverages encoding and packing techniques for optimized storage

e Maintains privacy and recoverability across fully-homomorphic
computations



Fully Homomorphic Encryption (FHE)

e Enables additions and multiplications without decryption

e This work uses schemes based on Ring Learning-with-Errors (Ring-LWE)
o Elements are based on polynomial ring Rq = Zq[x]/CD[x]
o Plaintext values are encoded into polynomials

Example:

— 2 n
A— AX) = a,tax+axs+..+ax

e Compared to standard encryption, FHE has large storage requirement



Optimized polynomial encoding: Ciphertext Packing

Subfield packing: Packing values into subfields using Chinese Remainder Theorem (CRT)
Polynomial modulus: @(x) = x*+ 1 = (x - 2)(x - 23)(x - 2°)(x - 27) (mod 17)
Each vector element corresponds to a O degree polynomial:

v=[8,5,16,9]

1+x+7x%+12x° = 8 mod (17,x-2)

1+x+7x%+12x° = 5 mod (17, x-23)

1+x+7x%+12x3 = 16 mod (17, x-2°)

1+x+7x%>+12x3 = 9 mod (17, x-27)
Utilized in CKKS and BGV — X-Cipher leverages BGV scheme

Enables SIMD-like homomorphic operations




X-Cipher key ideas:

e Generate code words for plaintext vectors and pack them alongside each
other for optimized storage and recovery capability

e Provide homomorphic recovery algorithms to enable data recovery
without requiring decryption

e Enable computations over homomorphic ciphertexts that maintain the
ability to recover intermediate or final results



X-Cipher Workflow

Setup + Computation ' Recovery | Teardown
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X-Cipher Workflow

Setup

Computation

Recovery

Teardown
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X-Cipher Workflow

Setup

Computation

Recovery

Teardown
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S Store ciphertext |! ! |
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X-Code for codewords

e Utilize X-Code erasure codes -

o Dual parity — two column recovery

o Only requires xor operations — Additionin Z, 5
ata <

e Constructannxn grid

o Firstn-2rows are data {
o Last 2 rows with codewords

Codewords Y

Example: n=5



How to generate codewords?

e First row of codewords is computed by
addition along slope +1 diagonals
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How to generate codewords

e First row of codewords is computed by
addition along +1 slope diagonals

e Second row of codewords is computed
by addition along -1 slope diagonals
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X-Code structure for large data

e Problem: proportion of
recoverable data decreases as grid
becomes larger

e Additionally, might assume we
have more available servers




X-Cipher Structure

e Stack mofthenxngrids vertically

e Useencoding and ciphertext
packing to encrypt each column
into a single ciphertext

e Perform operations on each
column

e Maximizes the “utilization” of
ciphertext packing
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X-Cipher Workflow

Setup

Computation

Recovery

Teardown
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Recovery follows algorithm of X-Code

e Summing along the diagonals to

recover data
Data <

Codewords <
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Recovery follows algorithm of X-Code

e Summing along the diagonals to
recover data

e However, ciphertexts correspond
to a single column

e We must rotate the columns
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Ciphertext Rotation

e Forthe +1 sloped diagonals, the
column ¢, must be rotated by n-i-1
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Ciphertext Rotation

e Forthe +1 sloped diagonals, the
column ¢, must be rotated by n-i-1

e Forthe-1slopeddiagonals, the
column c. must be rotated by i
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Ciphertext Rotation

e Forthe +1 sloped diagonals, the
column ¢. must be rotated by n-i-1

e Forthe-1slopeddiagonals, the
column c. must be rotated by i

e Recall: X-Cipher structure is
multiple square grids

X-Cipher rotation algorithm
applies to all internal square
grids simultaneously



Rotation for one column recovery

Consider a case in which Adversary has caused failure in Server O (c0 is lost)

doo dos don1
dio d, ding
Pn2o || Pn-21 Pr2n1
Pn-10 || Pn-11 Pr-1n-1
ooy

Co is lost



Rotation for one column recovery

First we, detect ¢, is lost due to a lack of response from Server O

doo dos don1
dio d, ding
Pn2o || Pn-21 Pr2n1
Pn-10 || Pn-11 Pr-1n-1
ooy

Co is lost



Rotation for one column recovery

Second, we begin rotating and summing to recover via +1 sloped codewords
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Rotation for one column recovery

We recover all data within ¢, except for the final codeword p_, .

w@  wm® =@

doo dos do 1 .| Pa-10 || Pn21 do 1 . | Pa-1,0 || Pn-21 Aot
: P, : P,
dio || dis At [ oo n-1.1 dipt | 1| Yoo =l dna
Pn2o || Pn21 Pr-2n-1| : dis0 || nas Pran-1] dis0 || nan Pranaf
Pn-10 || Pn-11 Prtna|| Pn2o || dy3y Po-tn-1| i | Pa20 || di34 Prini]| ¢
l l l 5 l+1 +11 J 5 l+1 +11 J
o G Chr @ C0 Oy Cha 0 S0 Cy C

c, is lost RotCols (e, +1) - Recover last n-2 cells :



Rotation for one column recovery

Perform another rotation and summing to recover the final data
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Rotation for one column recovery

¢, has now been fully recovered. It can be redistributed to continue operations
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Reassemble final data



Other features (see paper for details!)

e Two column recovery — multiple iterations of the one-column recovery

e Basicoperations/ Primitive operations:
o Homomorphic arithmetic, refresh codewords, dot-product, summation

e Demonstrate construction of complex algorithms:

o Private set intersection (PSI)
o  Matrix multiplication



Results

= N
w o

Seconds
(=]
o

e Evaluated using CloudLab _ Fﬂ
e Primitive function timing Z .

|

Rotate One Col. Summation Refresh Dot Product Two Column
Columns Recovery Codewords Recovery
e Ciphertextsize impact
Parameters Size (KB)
Dimension (n)|Multiples (m)|Data Cells|Plaintext|Ciphertext (X-Cipher)|Ciphertext (without)
5 7 180 %2 0.93 55.8
0 9 315 1.26 180 82.1
11 5) 495 1.98 2.05 112.5
13 4 572 2.28 2.42 125.7
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