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Computing on the Cloud

● Outsourcing computations to the cloud has become incredibly common

User

Distributed Devices



Computing on the Cloud

● To leverage cloud services on secrets, User’s might encrypt their data in-transit
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Computing on the Cloud

● Using a shared shared key, the cloud would decrypt the secrets to compute their outputs
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Computing on the Cloud

● Servers transmit the encrypted output back to the user
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● Since data is decrypted during computations, could lead to potential leakages

!!

Computing on the Cloud
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A solution: Homomorphic Encryption (HE)
● Produces ciphertexts that can undergo computations without decryption

● Protect data while in-storage, in-transit, and in-use

[5,3]

[10,6]

Encrypt Decrypt

f: Σm

f: Σm

8

16

Encrypt Decrypt

Encrypt(m) = 2 * m       Decrypt(c) = c / 2
Toy Example:

● Partially (add. or mult.) or Fully (add. and mult.) homomorphic



● With support for HE, computations can take place without ever revealing the secrets

?

Computing on the Cloud

User
Distributed Devices

Encrypt

Decrypt

write

read

1q@d%

2p!e&

9&yT#2

5m*zd2

6$UzAq

0v87&6

6

3

9

12

6

18

1q@d%

9&yT#2

6$UzAq

2p!e&

5m*zd2

0v87&6

1q@d%

2p!e&

9&yT#2

5m*zd2

6$UzAq

0v87&6



● How can we handle data losses in the cloud?

!!

Challenge: Making HE ciphertexts resilient
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Common approach: Erasure codes

● Compute erasure codes over plaintext to enable recovery

d3 d2 d1 d0

p0

p1 p2

d0 d1
d3

d2

d3 d2 d1 p2 d0 p1 p0

XOR Circles

4-bit data 7-bit data

● Distribute redundancy codewords over servers



The problem with erasure codes and HE ciphertexts

How can it be applied to ciphertexts?

● If trivially applied, would be computed on the ciphertext level

● Problem: 
○ Storage impact of codewords is proportional to input 

○ HE ciphertexts can be LARGE → Ciphertexts can be large polynomials (Ring-LWE based 

FHE)

■ ~6000% size increase from plaintext

Hom.Enc( )Plaintexts Ciphertexts GenerateCodes() Codewords



Alternative: Codewords first, then encrypt

A version Encrypting-with-Redundancy

● Not well studied for Homomorphic Encryption

● Problem: 
○ Assume the ciphertexts are not operated on, or only supported for partial homomorphic 

operations

○ Not applicable for fully homomorphic schemes 

○ Not applicable for variety of complex cloud computing operations

GenerateCodes()Plaintexts Codewords Hom.Enc( ) Ciphertexts



To bridge this gap: X-Cipher

● Enables recovery of fully homomorphic ciphertexts without decryption

● Leverages encoding and packing techniques for optimized storage

● Maintains privacy and recoverability across fully-homomorphic 

computations



Fully Homomorphic Encryption (FHE)

● Enables additions and multiplications without decryption

● This work uses schemes based on Ring Learning-with-Errors (Ring-LWE)
○ Elements are based on polynomial ring R

q
 = Z

q
[x]/Φ[x]

○ Plaintext values are encoded into polynomials

Example:

A → A(x) = a
0

 + a
1

x + a
2

x2 + … + a
n
xn

● Compared to standard encryption, FHE has large storage requirement



Optimized polynomial encoding: Ciphertext Packing 

Subfield packing: Packing values into subfields using Chinese Remainder Theorem (CRT)

Polynomial modulus: 𝛷(x) = x4 + 1 = (x - 2)(x - 23)(x - 25)(x - 27) (mod 17)

Each vector element corresponds to a 0 degree polynomial:

v = [8, 5, 16, 9]

1 + x + 7x2 + 12x3  ☰  8  mod  (17, x-2)

1 + x + 7x2 + 12x3  ☰  5  mod  (17, x-23)

1 + x + 7x2 + 12x3  ☰  16  mod  (17, x-25)

1 + x + 7x2 + 12x3  ☰  9  mod  (17, x-27)

Utilized  in CKKS and BGV  — X-Cipher leverages BGV scheme 

Enables SIMD-like homomorphic operations



X-Cipher key ideas:

● Generate code words for plaintext vectors and pack them alongside each 
other for optimized storage and recovery capability

● Provide homomorphic recovery algorithms to enable data recovery 
without requiring decryption 

● Enable computations over homomorphic ciphertexts that maintain the 
ability to recover intermediate or final results 
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X-Code for codewords

● Utilize X-Code erasure codes
○ Dual parity → two column recovery

○ Only requires xor operations → Addition in Z
2

 

● Construct an n x n grid
○ First n-2 rows are data
○ Last 2 rows with codewords

Data

Codewords

Example: n=5



How to generate codewords?

● First row of codewords is computed by 

addition along slope +1 diagonals 

Example: n=5



How to generate codewords

● First row of codewords is computed by 

addition along +1 slope diagonals 

● Second row of codewords is computed 

by addition along -1 slope diagonals

Example: n=5

Example: n=5



X-Code structure for large data

● Problem: proportion of 

recoverable data decreases as grid 

becomes larger

● Additionally, might assume we 

have more available servers



X-Cipher Structure

● Stack m of the n x n grids vertically

● Use encoding and ciphertext 
packing to encrypt each column 
into a single ciphertext

● Perform operations on each 
column

● Maximizes the “utilization” of 
ciphertext packing
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Recovery follows algorithm of X-Code

● Summing along the diagonals to 

recover data
Data

Codewords

Example: n=5



Recovery follows algorithm of X-Code

● Summing along the diagonals to 

recover data

● However, ciphertexts correspond 

to a single column

● We must rotate the columns
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Ciphertext Rotation

● For the +1 sloped diagonals, the 

column ci must be rotated by n-i-1
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Ciphertext Rotation

● For the +1 sloped diagonals, the 

column ci must be rotated by n-i-1

● For the -1 sloped diagonals, the 

column c
i
 must be rotated by i
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Ciphertext Rotation

● For the +1 sloped diagonals, the 
column ci must be rotated by n-i-1

● For the -1 sloped diagonals, the 
column c

i
 must be rotated by i

● Recall: X-Cipher structure is 
multiple square grids
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n

X-Cipher rotation algorithm 
applies to all internal square 
grids simultaneously



Rotation for one column recovery

Consider a case in which Adversary has caused failure in Server 0 (c
0

 is lost)
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Rotation for one column recovery

First we, detect c
0

 is lost due to a lack of response from Server 0
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Rotation for one column recovery

Second, we begin rotating and summing to recover via +1 sloped codewords
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Rotation for one column recovery

We recover all data within c
0

 except for the final codeword p
n-1,0
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Rotation for one column recovery

Perform another rotation and summing to recover the final data
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Rotation for one column recovery

c
0

 has now been fully recovered. It can be redistributed to continue operations
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Other features (see paper for details!)

● Two column recovery → multiple iterations of the one-column recovery

● Basic operations / Primitive operations:
○ Homomorphic arithmetic, refresh codewords, dot-product,  summation

● Demonstrate construction of complex algorithms:
○ Private set intersection (PSI)

○ Matrix multiplication



Results

● Evaluated using CloudLab

● Primitive function timing

● Ciphertext size impact



Thank you! 

Information:

Paper (via ICICS):        Code (via Github):      

Contact:   
My email (ac7717@rit.edu)


