
X-Cipher: Achieving Data Resiliency in
Homomorphic Ciphertexts

Adam Caulfield, Nabiha Raza, Peizhao Hu

Rochester Institute of Technology
Rochester, New York, USA

Computing on the Cloud

● Outsourcing computations to the cloud has become incredibly common

User

Distributed Devices

Computing on the Cloud

● To leverage cloud services on secrets, User’s might encrypt their data in-transit

Distributed Devices
User

Encrypt

write

6

3

9

1q@d%

9&yT#2

6$UzAq

Computing on the Cloud

● Using a shared shared key, the cloud would decrypt the secrets to compute their outputs

Distributed Devices
User

Encrypt

write

6

3

9

1q@d%

9&yT#2

6$UzAq

6

1q@d%

12

3

9&yT#2

6

9

6$UzAq

18

Computing on the Cloud

● Servers transmit the encrypted output back to the user

User
Distributed Devices

Encrypt

Decrypt

write

read

6

1q@d%

12

2p!e&

3

9&yT#2

6

5m*zd2

9

6$UzAq

18

0v87&6

6

3

9

12

6

18

1q@d%

9&yT#2

6$UzAq

2p!e&

5m*zd2

0v87&6

● Since data is decrypted during computations, could lead to potential leakages

!!

Computing on the Cloud

User
Distributed Devices

Encrypt

Decrypt

write

read

6

1q@d%

12

2p!e&

3

9&yT#2

6

5m*zd2

9

6$UzAq

18

0v87&6

6

3

9

12

6

18

1q@d%

9&yT#2

6$UzAq

2p!e&

5m*zd2

0v87&6

A solution: Homomorphic Encryption (HE)
● Produces ciphertexts that can undergo computations without decryption

● Protect data while in-storage, in-transit, and in-use

[5,3]

[10,6]

Encrypt Decrypt

f: Σm

f: Σm

8

16

Encrypt Decrypt

Encrypt(m) = 2 * m Decrypt(c) = c / 2
Toy Example:

● Partially (add. or mult.) or Fully (add. and mult.) homomorphic

● With support for HE, computations can take place without ever revealing the secrets

?

Computing on the Cloud

User
Distributed Devices

Encrypt

Decrypt

write

read

1q@d%

2p!e&

9&yT#2

5m*zd2

6$UzAq

0v87&6

6

3

9

12

6

18

1q@d%

9&yT#2

6$UzAq

2p!e&

5m*zd2

0v87&6

1q@d%

2p!e&

9&yT#2

5m*zd2

6$UzAq

0v87&6

● How can we handle data losses in the cloud?

!!

Challenge: Making HE ciphertexts resilient

User
Distributed Devices

Encrypt

Decrypt

write

read

1q@d% 9&yT#2

5m*zd2

6$UzAq

6

3

9

12

6

18

1q@d%

9&yT#2

6$UzAq

2p!e&

5m*zd2

0v87&6

000000

9&yT#2

5m*zd2

Outage

000000

Failure

Common approach: Erasure codes

● Compute erasure codes over plaintext to enable recovery

d3 d2 d1 d0

p0

p1 p2

d0 d1
d3

d2

d3 d2 d1 p2 d0 p1 p0

XOR Circles

4-bit data 7-bit data

● Distribute redundancy codewords over servers

The problem with erasure codes and HE ciphertexts

How can it be applied to ciphertexts?

● If trivially applied, would be computed on the ciphertext level

● Problem:
○ Storage impact of codewords is proportional to input

○ HE ciphertexts can be LARGE → Ciphertexts can be large polynomials (Ring-LWE based

FHE)

■ ~6000% size increase from plaintext

Hom.Enc()Plaintexts Ciphertexts GenerateCodes() Codewords

Alternative: Codewords first, then encrypt

A version Encrypting-with-Redundancy

● Not well studied for Homomorphic Encryption

● Problem:
○ Assume the ciphertexts are not operated on, or only supported for partial homomorphic

operations

○ Not applicable for fully homomorphic schemes

○ Not applicable for variety of complex cloud computing operations

GenerateCodes()Plaintexts Codewords Hom.Enc() Ciphertexts

To bridge this gap: X-Cipher

● Enables recovery of fully homomorphic ciphertexts without decryption

● Leverages encoding and packing techniques for optimized storage

● Maintains privacy and recoverability across fully-homomorphic

computations

Fully Homomorphic Encryption (FHE)

● Enables additions and multiplications without decryption

● This work uses schemes based on Ring Learning-with-Errors (Ring-LWE)
○ Elements are based on polynomial ring R

q
 = Z

q
[x]/Φ[x]

○ Plaintext values are encoded into polynomials

Example:

A → A(x) = a
0

 + a
1

x + a
2

x2 + … + a
n
xn

● Compared to standard encryption, FHE has large storage requirement

Optimized polynomial encoding: Ciphertext Packing

Subfield packing: Packing values into subfields using Chinese Remainder Theorem (CRT)

Polynomial modulus: 𝛷(x) = x4 + 1 = (x - 2)(x - 23)(x - 25)(x - 27) (mod 17)

Each vector element corresponds to a 0 degree polynomial:

v = [8, 5, 16, 9]

1 + x + 7x2 + 12x3 ☰ 8 mod (17, x-2)

1 + x + 7x2 + 12x3 ☰ 5 mod (17, x-23)

1 + x + 7x2 + 12x3 ☰ 16 mod (17, x-25)

1 + x + 7x2 + 12x3 ☰ 9 mod (17, x-27)

Utilized in CKKS and BGV — X-Cipher leverages BGV scheme

Enables SIMD-like homomorphic operations

X-Cipher key ideas:

● Generate code words for plaintext vectors and pack them alongside each
other for optimized storage and recovery capability

● Provide homomorphic recovery algorithms to enable data recovery
without requiring decryption

● Enable computations over homomorphic ciphertexts that maintain the
ability to recover intermediate or final results

X-Cipher Workflow
U

se
r,

Ev

al
ua

to
r,

Setup Recovery

Recover loss

Upload
ciphertext

Store ciphertext
for computation

Teardown

Encrypt data
& codewords

Decode data

Download /
decrypt

ciphertext

Encode
data

Computation

Generate codewords

Basic Ops
Vector Ops
Matrix Ops

X-Cipher Workflow
U

se
r,

Ev

al
ua

to
r,

Setup Recovery TeardownComputation

Encode
data

Generate codewords

Recover loss

Upload
ciphertext

Store ciphertext
for computation

Encrypt data
& codewords

Decode data

Download /
decrypt

ciphertext

Basic Ops
Vector Ops
Matrix Ops

X-Cipher Workflow
U

se
r,

Ev

al
ua

to
r,

Setup Recovery TeardownComputation

Upload
ciphertext

Store ciphertext
for computation

Encrypt data
& codewords

Decode data

Download /
decrypt

ciphertext

Basic Ops
Vector Ops
Matrix Ops

Encode
data

Generate codewords

Recover loss

X-Code for codewords

● Utilize X-Code erasure codes
○ Dual parity → two column recovery

○ Only requires xor operations → Addition in Z
2

● Construct an n x n grid
○ First n-2 rows are data
○ Last 2 rows with codewords

Data

Codewords

Example: n=5

How to generate codewords?

● First row of codewords is computed by

addition along slope +1 diagonals

Example: n=5

How to generate codewords

● First row of codewords is computed by

addition along +1 slope diagonals

● Second row of codewords is computed

by addition along -1 slope diagonals

Example: n=5

Example: n=5

X-Code structure for large data

● Problem: proportion of

recoverable data decreases as grid

becomes larger

● Additionally, might assume we

have more available servers

X-Cipher Structure

● Stack m of the n x n grids vertically

● Use encoding and ciphertext
packing to encrypt each column
into a single ciphertext

● Perform operations on each
column

● Maximizes the “utilization” of
ciphertext packing

...

c0 c1 cn...

m
 x

 n

n

...

n

n-2
2

...

...

...

X-Cipher Workflow
U

se
r,

Ev

al
ua

to
r,

Setup Recovery TeardownComputation

Recover loss

Upload
ciphertext

Store ciphertext
for computation

Encrypt data
& codewords

Decode data

Download /
decrypt

ciphertext

Basic Ops
Vector Ops
Matrix Ops

Encode
data

Generate codewords

Recovery follows algorithm of X-Code

● Summing along the diagonals to

recover data
Data

Codewords

Example: n=5

Recovery follows algorithm of X-Code

● Summing along the diagonals to

recover data

● However, ciphertexts correspond

to a single column

● We must rotate the columns

Data

Codewords

C
0

C
1

C
n-1

C
2

C
3

Ciphertext Rotation

● For the +1 sloped diagonals, the

column ci must be rotated by n-i-1
...

cn-1c0 c1 ...

...

c+1
n-1c+1

0 c+1
1

...

Ciphertext Rotation

● For the +1 sloped diagonals, the

column ci must be rotated by n-i-1

● For the -1 sloped diagonals, the

column c
i
 must be rotated by i

...

cn-1c0 c1 ...

...

c+1
n-1c+1

0 c+1
1...

... ...

cn-1c0 c1 ... c-1
n-1c-1

0 c-1
1 ...

Ciphertext Rotation

● For the +1 sloped diagonals, the
column ci must be rotated by n-i-1

● For the -1 sloped diagonals, the
column c

i
 must be rotated by i

● Recall: X-Cipher structure is
multiple square grids

...

cn-1c0 c1 ...

...

c+1
n-1c+1

0 c+1
1...

.........

n

X-Cipher rotation algorithm
applies to all internal square
grids simultaneously

Rotation for one column recovery

Consider a case in which Adversary has caused failure in Server 0 (c
0

 is lost)

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

c0 is lost

1Step

...

Rotation for one column recovery

First we, detect c
0

 is lost due to a lack of response from Server 0

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

c0 is lost

1Step

...

Rotation for one column recovery

Second, we begin rotating and summing to recover via +1 sloped codewords

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

RotCols(c,+1)c0 is lost

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

1Step 2Step

...

Rotation for one column recovery

We recover all data within c
0

 except for the final codeword p
n-1,0

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

RotCols(c,+1)c0 is lost Recover last n-2 cells

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

1Step 2Step 3Step

...

Rotation for one column recovery

Perform another rotation and summing to recover the final data

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

RotCols(c,+1)c0 is lost Recover last n-2 cells

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

...

c-1
0 c-1

1 c-1
n-1

d0,0

d1,0

pn-1,0

pn-2,0

d1,1

d2,1

pn-2,1

d0,1

pn-1,n-2

d0.n-1

dn-3,n-1

pn-1,n-1

RotCols(c,-1)

1Step 2Step 3Step 4Step

...

Rotation for one column recovery

c
0

 has now been fully recovered. It can be redistributed to continue operations

...

d0,0

d1,0

pn-2,0

pn-1,0

d0,1

d1,1

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

pn-1,n-1

c0 c1 cn-1

RotCols(c,+1)c0 is lost Recover last n-2 cells

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

...

d0,0

dn-3,0

pn-2,0

pn-2,1

pn-1,1

d0,n-1

d1,n-1

pn-2,n-1

c+1
0 c+1

1 c+1
n-1

pn-1,n-1

pn-1,0

dn-4,1

dn-3,1

Reassemble final data

...

c-1
0 c-1

1 c-1
n-1

d0,0

d1,0

pn-1,0

pn-2,0

d1,1

d2,1

pn-2,1

d0,1

pn-1,n-2

d0.n-1

dn-3,n-1

pn-1,n-1

RotCols(c,-1)

...

c0 c1 cn-1

d0,0

d1,0

pn-1,0

pn-2,0

d1,1

d2,1

pn-2,1

d0,1

pn-1,n-2

d0.n-1

dn-3,n-1

pn-1,n-1

1Step 2Step 3Step 4Step 5Step

...

Other features (see paper for details!)

● Two column recovery → multiple iterations of the one-column recovery

● Basic operations / Primitive operations:
○ Homomorphic arithmetic, refresh codewords, dot-product, summation

● Demonstrate construction of complex algorithms:
○ Private set intersection (PSI)

○ Matrix multiplication

Results

● Evaluated using CloudLab

● Primitive function timing

● Ciphertext size impact

Thank you!

Information:

Paper (via ICICS): Code (via Github):

Contact:
My email (ac7717@rit.edu)

