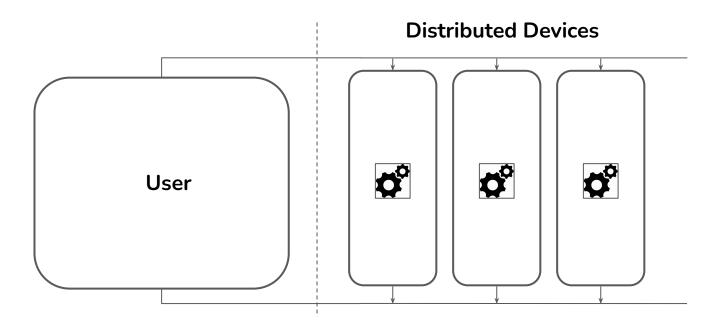
X-Cipher: Achieving Data Resiliency in Homomorphic Ciphertexts

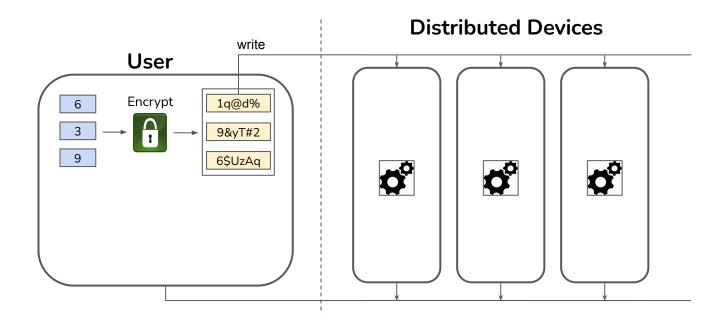
Adam Caulfield, Nabiha Raza, Peizhao Hu

Rochester Institute of Technology Rochester, New York, USA

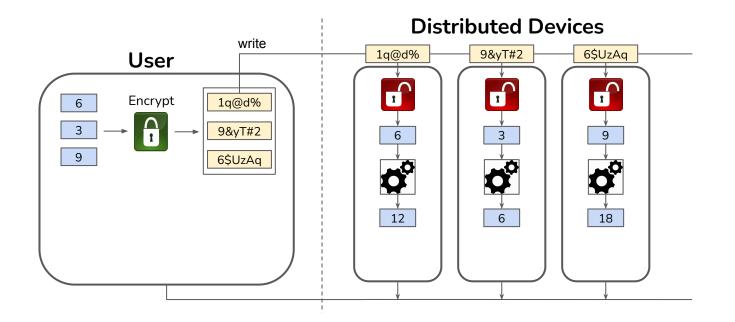
• Outsourcing computations to the cloud has become incredibly common



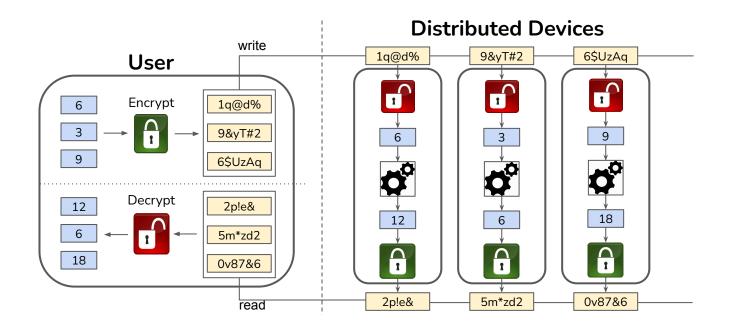
• To leverage cloud services on secrets, User's might encrypt their data in-transit



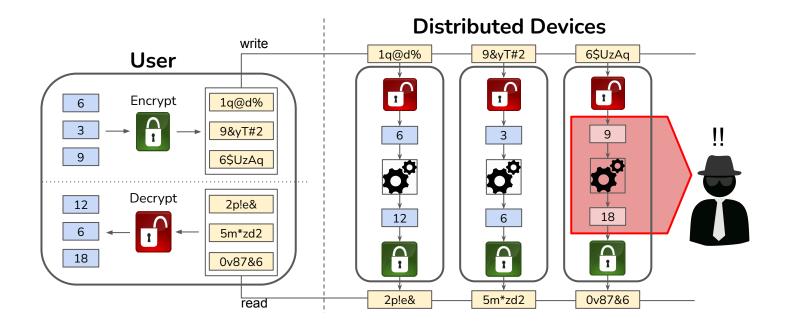
• Using a shared shared key, the cloud would decrypt the secrets to compute their outputs



• Servers transmit the encrypted output back to the user



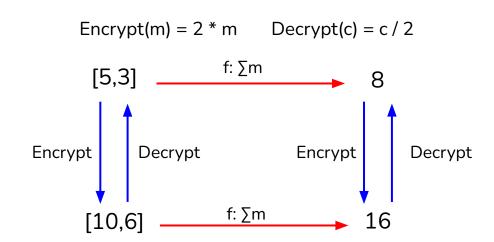
• Since data is decrypted during computations, could lead to potential leakages



A solution: Homomorphic Encryption (HE)

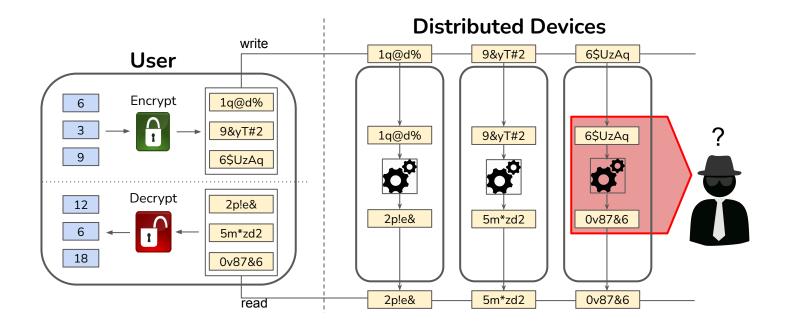
- Produces ciphertexts that can undergo computations without decryption
- Protect data while in-storage, in-transit, and *in-use*

Toy Example:



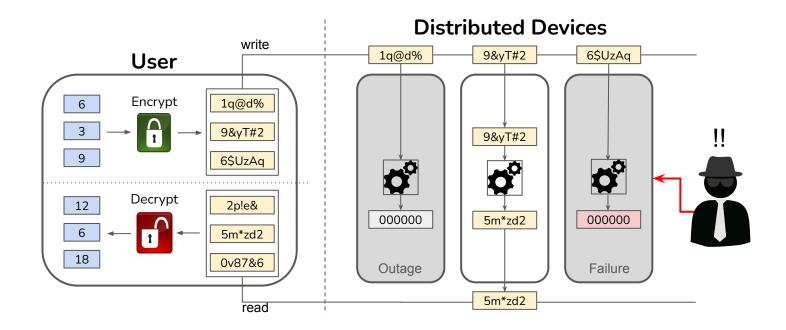
• Partially (add. or mult.) or Fully (add. and mult.) homomorphic

• With support for HE, computations can take place without ever revealing the secrets



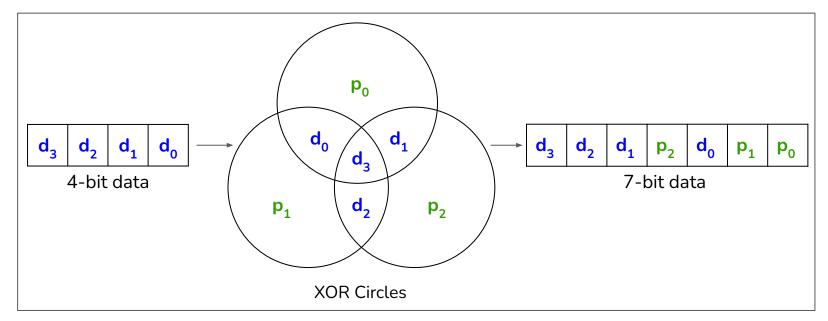
Challenge: Making HE ciphertexts resilient

• How can we handle data losses in the cloud?



Common approach: Erasure codes

• Compute erasure codes over plaintext to enable recovery



• Distribute redundancy codewords over servers

The problem with erasure codes and HE ciphertexts

How can it be applied to ciphertexts?

• If trivially applied, would be computed on the ciphertext level

- Problem:
 - Storage impact of codewords is proportional to input
 - HE ciphertexts can be LARGE \rightarrow Ciphertexts can be large polynomials (Ring-LWE based FHE)
 - ~6000% size increase from plaintext

Alternative: Codewords first, then encrypt

A version Encrypting-with-Redundancy

• Not well studied for Homomorphic Encryption

• Problem:

- Assume the ciphertexts are not operated on, or only supported for partial homomorphic operations
- Not applicable for fully homomorphic schemes
- Not applicable for variety of complex cloud computing operations

To bridge this gap: X-Cipher

• Enables recovery of fully homomorphic ciphertexts without decryption

• Leverages encoding and packing techniques for optimized storage

• Maintains privacy and recoverability across fully-homomorphic computations

Fully Homomorphic Encryption (FHE)

- Enables additions and multiplications without decryption
- This work uses schemes based on Ring Learning-with-Errors (Ring-LWE)
 - Elements are based on polynomial ring $R_a = Z_a[x]/\Phi[x]$
 - Plaintext values are encoded into polynomials

Example:

$$\mathsf{A} \longrightarrow \mathsf{A}(\mathsf{x}) = \mathsf{a}_0 + \mathsf{a}_1 \mathsf{x} + \mathsf{a}_2 \mathsf{x}^2 + \dots + \mathsf{a}_n \mathsf{x}^n$$

• Compared to standard encryption, FHE has large storage requirement

Optimized polynomial encoding: Ciphertext Packing

Subfield packing: Packing values into subfields using Chinese Remainder Theorem (CRT)

Polynomial modulus: $\Phi(x) = x^4 + 1 = (x - 2)(x - 2^3)(x - 2^5)(x - 2^7) \pmod{17}$

Each vector element corresponds to a 0 degree polynomial:

v = [8, 5, 16, 9] $1 + x + 7x^{2} + 12x^{3} \equiv 8 \mod (17, x-2)$ $1 + x + 7x^{2} + 12x^{3} \equiv 5 \mod (17, x-2^{3})$ $1 + x + 7x^{2} + 12x^{3} \equiv 16 \mod (17, x-2^{5})$ $1 + x + 7x^{2} + 12x^{3} \equiv 9 \mod (17, x-2^{7})$

Utilized in CKKS and BGV – X-Cipher leverages BGV scheme

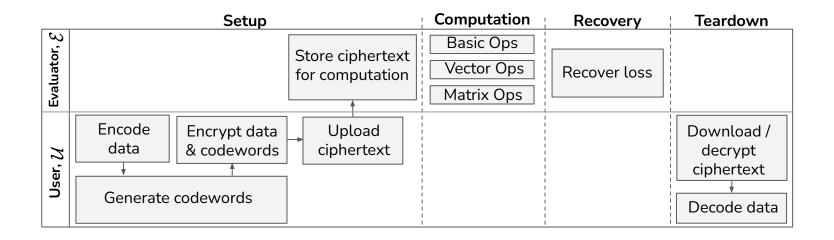
Enables SIMD-like homomorphic operations

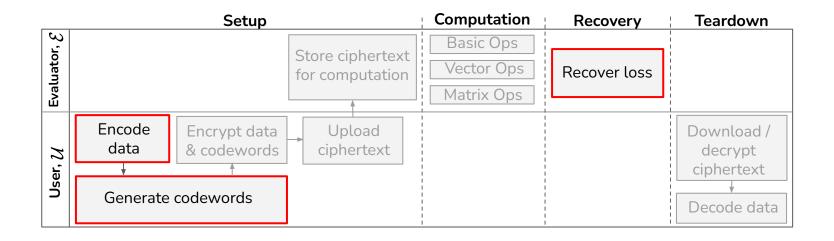
X-Cipher key ideas:

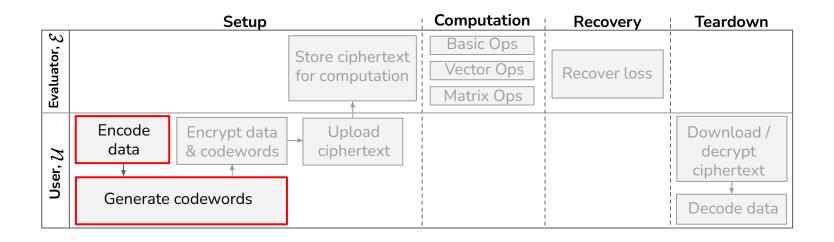
• Generate code words for plaintext vectors and pack them alongside each other for optimized storage and recovery capability

• Provide homomorphic recovery algorithms to enable data recovery without requiring decryption

• Enable computations over homomorphic ciphertexts that maintain the ability to recover intermediate or final results

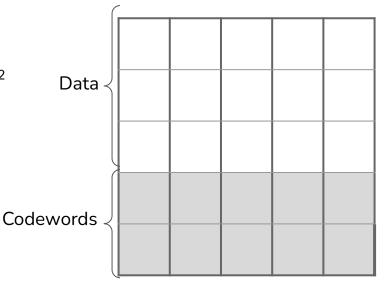






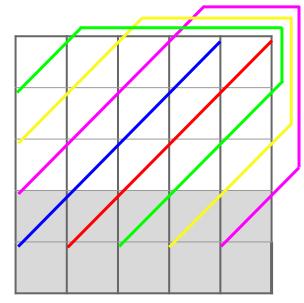
X-Code for codewords

- Utilize X-Code erasure codes
 - \circ Dual parity \rightarrow two column recovery
 - Only requires xor operations \rightarrow Addition in Z_2
- Construct an *n x n* grid
 - First *n*-2 rows are **data**
 - \circ Last 2 rows with codewords



How to generate codewords?

• First row of codewords is computed by addition along slope +1 diagonals

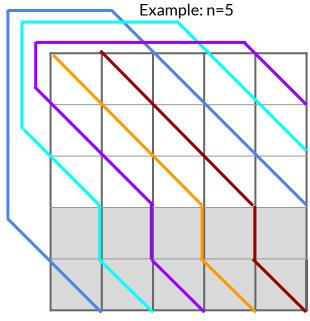


Example: n=5

How to generate codewords

• First row of codewords is computed by addition along +1 slope diagonals

• Second row of codewords is computed by addition along -1 slope diagonals



Example: n=5

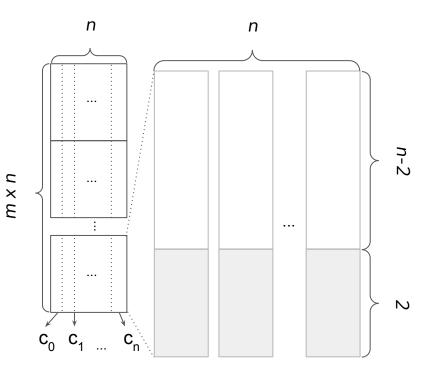
X-Code structure for large data

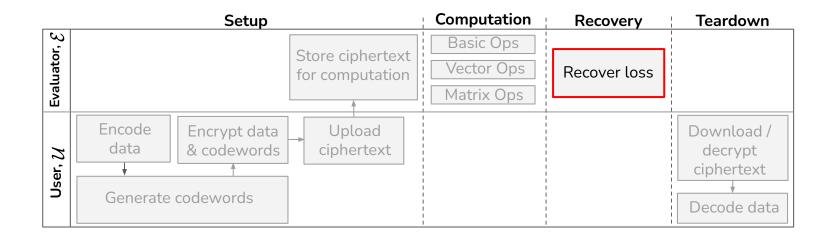
- Problem: proportion of recoverable data decreases as grid becomes larger
- Additionally, might assume we have more available servers

 		_		 	 	
			-			

X-Cipher Structure

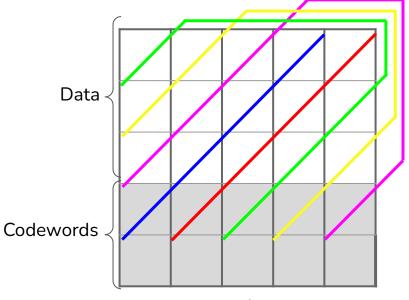
- Stack *m* of the *n x n* grids vertically
- Use encoding and ciphertext packing to encrypt each column into a single ciphertext
- Perform operations on each column
- Maximizes the "utilization" of ciphertext packing





Recovery follows algorithm of X-Code

• Summing along the diagonals to recover data

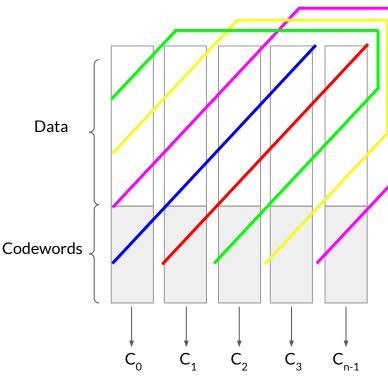


Example: n=5

Recovery follows algorithm of X-Code

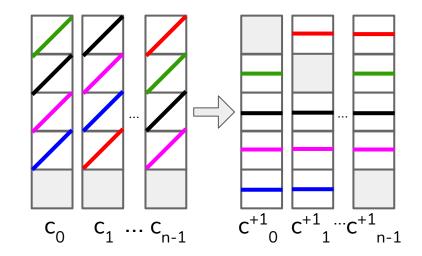
- Summing along the diagonals to recover data
- However, ciphertexts correspond to a single column

• We must *rotate* the columns



Ciphertext Rotation

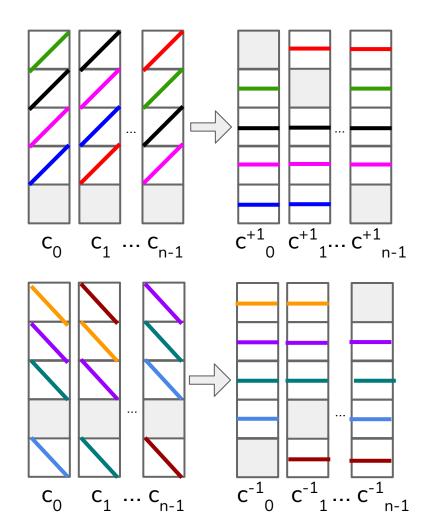
• For the +1 sloped diagonals, the column c_i must be rotated by *n-i-1*



Ciphertext Rotation

• For the +1 sloped diagonals, the column c_i must be rotated by *n-i-1*

• For the -1 sloped diagonals, the column c_i must be rotated by *i*

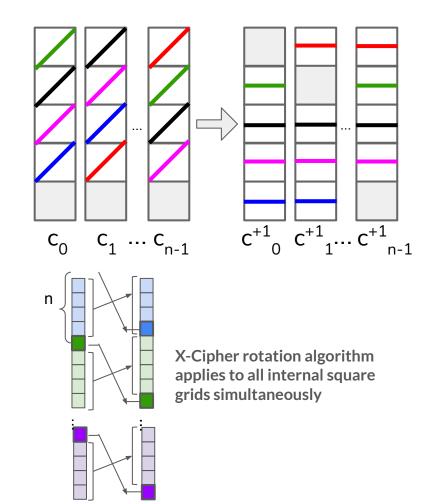


Ciphertext Rotation

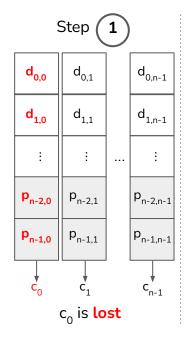
• For the +1 sloped diagonals, the column c_i must be rotated by *n-i-1*

• For the -1 sloped diagonals, the column c_i must be rotated by *i*

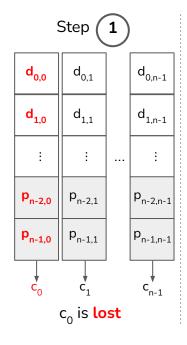
• Recall: X-Cipher structure is multiple square grids



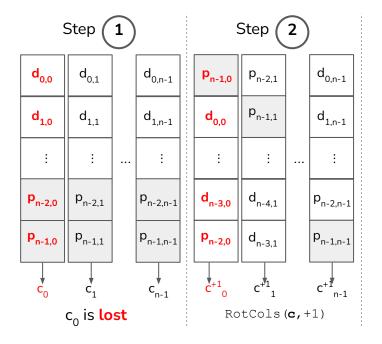
Consider a case in which Adversary has caused failure in Server 0 (c_0 is lost)



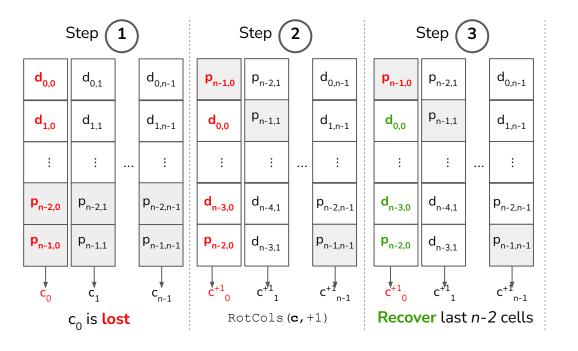
First we, detect c_0 is lost due to a lack of response from Server 0



Second, we begin rotating and summing to recover via +1 sloped codewords



We **recover** all data within c_0 except for the final codeword $p_{n-1,0}$



Perform another rotation and summing to recover the final data

Q	Step (1)		Q	Step ()		Step ()		Step 4						
d _{0,0}	d _{0,1}		d _{0,n-1}		р _{п-1,0}	p _{n-2,1}		d _{0,n-1}	р _{п-1,0}	p _{n-2,1}		d _{0,n-1}		d _{0,0}	d _{1,1}		P _{n-1,n-2}	
d _{1,0}	d _{1,1}		d _{1,n-1}		d _{0,0}	p _{n-1,1}		d _{1,n-1}	d _{0,0}	p _{n-1,1}		d _{1,n-1}		d _{1,0}	d _{2,1}		d _{0.n-1}	
:	:		:		:	:		:	:	:		:		:	:		:	
p _{n-2,0}	p _{n-2,1}		p _{n-2,n-1}		d _{n-3,0}	d _{n-4,1}		p _{n-2,n-1}	d _{n-3,0}	d _{n-4,1}		p _{n-2,n-1}		p _{n-1,0}	p _{n-2,1}		d _{n-3,n-1}	
p _{n-1,0}	p _{n-1,1}		p _{n-1,n-1}		р _{п-2,0}	d _{n-3,1}		p _{n-1,n-1}	р _{п-2,0}	d _{n-3,1}		p _{n-1,n-1}		p _{n-2,0}	d _{0,1}		p _{n-1,n-1}	
c ₀	C_1	,	c _{n-1}		C ⁺¹ 0	c+1		c+1	C ⁺¹ 0	c+1	I	c+1		c ⁻¹ ₀	c ⁻¹ 1	I	C ⁻¹	
c _o is lost					Ro	tCols	+1)	Recover last n-2 cells					RotCols(c ,-1)					

 c_0 has now been fully recovered. It can be redistributed to continue operations

Step 1				Step 2					Step 3				Step 4					Step 5				
d _{0,0}	d _{0,1}		d _{0,n-1}	р _{п-1,0}	p _{n-2,1}		d _{0,n-1}		р _{п-1,0}	p _{n-2,1}		d _{0,n-1}	d _{0,0}	d _{1,1}		p _{n-1,n-2}		d _{0,0}	d _{1,1}		p _{n-1,n-2}	
d _{1,0}	d _{1,1}		d _{1,n-1}	d _{0,0}	p _{n-1,1}		d _{1,n-1}		d _{0,0}	p _{n-1,1}		d _{1,n-1}	d _{1,0}	d _{2,1}		d _{0.n-1}		d _{1,0}	d _{2,1}		d _{0.n-1}	
:	:		:	:	:		:		:	:		:	:	:		:		:	:		:	
p _{n-2,0}	p _{n-2,1}		p _{n-2,n-1}	d _{n-3,0}	d _{n-4,1}		p _{n-2,n-1}		d _{n-3,0}	d _{n-4,1}		p _{n-2,n-1}	 p _{n-1,0}	p _{n-2,1}		d _{n-3,n-1}		р _{п-1,0}	p _{n-2,1}		d _{n-3,n-1}	
р _{п-1,0}	p _{n-1,1}		p _{n-1,n-1}	р _{п-2,0}	d _{n-3,1}		p _{n-1,n-1}		p _{n-2,0}	d _{n-3,1}		p _{n-1,n-1}	p _{n-2,0}	d _{0,1}		p _{n-1,n-1}		p _{n-2,0}	d _{0,1}		p _{n-1,n-1}	
C ₀	c ₁		c _{n-1}	C ⁺¹ 0	c ⁺¹ 1		c+1		C ⁺¹ 0	c ⁺¹ 1		c+1	c ⁻¹ 0	c ⁻¹ 1	,	C ⁻¹ , n-1		c ₀ ↓	c ₁		c _{n-1}	
	c ₀ is lost Rot			otCols(c, +1)				Recover last n-2 cells			RotCols(c ,-1)					Reassemble final data						

Other features (see paper for details!)

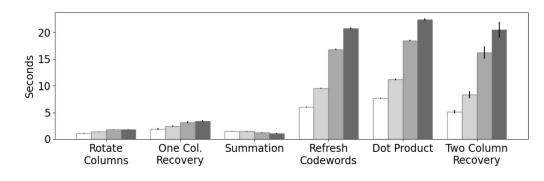
• Two column recovery \rightarrow multiple iterations of the one-column recovery

- Basic operations / Primitive operations:
 - Homomorphic arithmetic, refresh codewords, dot-product, summation

- Demonstrate construction of complex algorithms:
 - Private set intersection (PSI)
 - Matrix multiplication

Results

- Evaluated using CloudLab
- Primitive function timing
- Ciphertext size impact



F	Parameters			Size (KB)						
Dimension (n)	Multiples (m)	Data Cells	Plaintext	Ciphertext (X-Cipher)	Ciphertext (without)					
5	7	180	0.72	0.93	55.8					
7	9	315	1.26	1.30	82.1					
11	5	495	1.98	2.05	112.5					
13	4	572	2.28	2.42	125.7					

Thank you!

Information:

Paper (via ICICS):

Code (via Github):

Contact: My email (ac7717@rit.edu)