
1

ASAP: Reconciling Asynchronous Real-Time Operations
and Proofs of Execution in Simple Embedded Systems

Adam Caulfield Rochester Institute of Technology
Norrathep Rattanavipanon Prince Songkla University Phuket
Ivan De Oliveira Nunes Rochester Institute of Technology

2

Embedded (IOT) Devices

• Connect physical & digital worlds

• Resource constrained

• Targeted by exploits & attacks

3

Safety Critical Systems Rely on Embedded Devices

Embedded Devices used for safety critical settings
• Smoke detector in a household

• Remote controlled syringe pump for telemedicine

Device controllers rely on sensor values and signals from the remote
device being correct and untampered

4

• Remotely verify the binary
currently installed on the device

• Enforce protocol through
hardware support

Remote Attestation (RA)

Verifier (Vrf) Prover (Prf)

(1) Send Challenge chal

(2) Get Attestation Result
H = MAC(k, chal || StatePrv)

(3) Send Attestation Result H

(4) Verify the result with
expected state

Verify(H, StateVrf ,chal, k)

5

Proof of Execution (PoX)
● Require hardware to monitor additional security properties to provide

the verifier with a PoX:

Existing architecture APEX (USENIX Security ‘20) provides:
○ Software Immutability
○ Memory Protection
○ Execution Atomicity
○ Response Protection

6

Proof of Execution (PoX)
● Require hardware to monitor additional security properties to provide

the verifier with a PoX:

Existing architecture APEX (USENIX Security ‘20) provides:
○ Software Immutability
○ Memory Protection
○ Execution Atomicity
○ Response Protection

Limitation: Asynchronous processing cannot benefit from PoX

7

Remote Syringe Pump for Telemedicine

Begin injecting
medicine

Set up timer
interrupt to control
injection dosage

Enter low-power
mode

Wake up when
timer expires to

stop the injection

2

1

3

4

• Use of timer-based interrupt
allows for energy efficiency

• Cannot benefit from PoX since is
asynchronous

8

Remote Syringe Pump for Telemedicine

Begin injecting
medicine

Set up busy-wait
loop to control

injection dosage

Processor
counts the time

in a loop

Wake up when
timer expires to

stop the injection

2

1

3

4

Use busy-wait approach

• Disable all interrupts
• Require the processor to wait

using a for loop

Problems:

• Power consumption
• Uninterruptible in case of

emergency
9

ASAP: Architecture for Secure Asynchronous Processing in PoX

• Builds upon existing PoX architecture to support
Asynchronous Processing

• Achieved by ensuring the Ephemeral Immutability and Integrity of:
1) The Interrupt Vector Table (IVT) within the MCU address space
2) Any interrupt service routines (ISRs) that are known and expected
prior to device deployment

10

System Overview

• ASAP monitors MCU signals to
determine the state

• Alongside architecture VRASED
which supports RA

...
...

MCU Memory

OR

Challenge
MCU
Core

ASAP

VRASED reset

ER

ORMAX

ORMIN

ERMAX

ERMIN

EXEC

IVT

PC, irq, Ren, Wen, Daddr, DMAen, DMAaddr

11

System Overview

• In MCU memory, regions are
reserved for the

• Executable Region (ER)
• Output Region (OR)

• Their start and end addresses
are stored for ASAP to monitor

...
...

MCU Memory

Challenge
MCU
Core

ASAP

VRASED reset

EXEC
PC, irq, Ren, Wen, Daddr, DMAen, DMAaddr

IVT

OR

ER

ORMAX

ORMIN

ERMAX

ERMIN

12

System Overview

• The Challenge from the verifier is
stored & monitored

• ASAP sets EXEC to zero if any
PoX violation occurs

...
...

MCU Memory

MCU
Core

ASAP

VRASED reset

PC, irq, Ren, Wen, Daddr, DMAen, DMAaddr

OR

ER

ORMAX

ORMIN

ERMAX

ERMIN

IVT

Challenge

EXEC

13

System Overview

• The IVT is the last 16 entries in
the address space

• Start and end addresses are
known & monitored by ASAP

...
...

MCU Memory

MCU
Core

ASAP

VRASED reset

PC, irq, Ren, Wen, Daddr, DMAen, DMAaddr

OR

ER

ORMAX

ORMIN

ERMAX

ERMIN

Challenge

EXEC

IVT

14

ASAP Security Properties

1) IVT Immutability & Integrity
• Monitor the CPU & DMA for write

attempts to the IVT

• Set EXEC to zero if a write attempt
occurs

IVT Immutability
If (DMAen & DMAaddr ∈ IVT) | (Wen & Daddr ∈ IVT)→!EXEC

Execution exits at ERmax

If (PC ∈ ER) & !(next PC ∈ ER) → PC = ERmax & !EXEC

Execution starts at ERmin

If !(PC ∈ ER) & next PC ∈ ER → next PC = ERmin &
!EXEC

15

ASAP Security Properties

2) ISR Immutability & Integrity

...
ASAP

...

No ISR protection

`

IVT

ER

startER()

exitER()

ISR1

ISR2

ISR1

ISR2

main()
main()

ISR1ADDR

ISR2ADDR

ISR1ADDR

ISR2ADDR

IVT

ER

16

ASAP Security Properties

2) ISR Immutability & Integrity

• Selective linking in ASAP to
ensure all expected ISRs are
captured in ER

...
ASAP

...

No ISR protection

`

IVT

ER

startER()

exitER()

main()
main()

ISR1ADDR

ISR2ADDR

ISR1ADDR

ISR2ADDR

IVT

ER

ISR1

ISR2

ISR1

ISR2

17

ASAP Security Properties

2) ISR Immutability & Integrity

• Selective linking in ASAP to
ensure all expected ISRs are
captured in ER

• Ensure entry and exit at fixed
points

...
ASAP

...

No ISR protection

`

IVT

ERmain()
main()

ISR1ADDR

ISR2ADDR

ISR1ADDR

ISR2ADDR

IVT

ER

ISR1

ISR2

ISR1

ISR2

startER()

exitER()

18

ASAP Security Properties

2) ISR Immutability & Integrity

• Selective linking in ASAP to
ensure all expected ISRs are
captured in ER

• Ensure entry and exit at fixed
points

IVT Immutability
If (DMAen & DMAaddr ∈ IVT) | (Wen & Daddr ∈ IVT)→!EXEC

Execution exits at ERmax

If (PC ∈ ER) & !(next PC ∈ ER) → PC = ERmax & !EXEC

Execution starts at ERmin

If !(PC ∈ ER) & next PC ∈ ER → next PC = ERmin &
!EXEC

19

Selective Linking example

Example code

Linker Script Excerpt

20

Proof of Concept

APEX interrupted

ASAP valid ISR

ASAP invalid ISR

21

Conclusion

• ASAP: architectural support for PoX in MCUs that operate in real time

• Builds upon existing PoX architecture

• Requires minimal hardware modifications

• Selective linking makes protected ISRs easily configurable

• Allows for all software to benefit from PoX security guarantees

22

Thank you

23

